论文标题

UCA型号的循环展开:距离标签

Loop unrolling of UCA models: distance labeling

论文作者

Soulignac, Francisco J, Terlisky, Pablo

论文摘要

适当的循环弧(PCA)型号是一对$ m =(c,a)$,其中$ c $是一个圆圈,$ a $是$ c $的无包含弧家族,其极端是成对的。 Model $ m $代表一个digraph $ d $,每个$ v(a)$ a $ a \ in $ a \ in $ a \和一个边缘$ v(a)\ to v(b)$对于a(m)$中的每对arcs $ a,b \ a $ b $属于$ a $ a $ a $。对于$ k \ geq 0 $,$ k $ -th power $ d^k $ $ d $的顶点与$ d $和$ d $和$ v(a)\ to v(b)$是$ d^k $的边缘,当$ a \ neq b $,而$ v(a)$ v(a)$ n in $ d $ in $ d $ in $ k $的距离是$ d^k $。单位圆形ARC(UCA)模型是PCA模型$ u =(c,a)$,其中所有弧都具有相同的长度$ \ ell+1 $。如果$ \ ell $,则$ c $的长度$ c $,以及$ a $的极端是整数,那么$ u $是$(c,\ ell)$ - ca型号。对于$ i \ geq 0 $,通过用Arc $(S,S,S+I \ Ell+1)$替换每个Arc $(S,S+\ Ell+1)$获得型号$ i \ times u $的$ u $。如果$ u $代表digraph $ d $,则$ u $是$ k $ -multiplicative当$ i \ i \ times u $代表$ d^i $每$ 0 \ leq i \ leq k $。在本文中,我们设计了一种线性时间算法,以确定PCA型号$ M $等于$ K $ - 千年的UCA型号时,当$ k $作为输入时。该算法要么输出$ k $ - 千年的UCA型号$ u $相当于$ m $,要么是可以在线性时间进行身份验证的负证书。 我们的主要技术工具是那些相当于$ k $ - 多种UCA型号的PCA模型的新表征。对于$ k = 1 $,此特征为经典表示问题提供了一种新算法,该算法比以前已知的算法更简单。

A proper circular-arc (PCA) model is a pair $M = (C, A)$ where $C$ is a circle and $A$ is a family of inclusion-free arcs on $C$ whose extremes are pairwise different. The model $M$ represents a digraph $D$ that has one vertex $v(a)$ for each $a \in A$ and one edge $v(a) \to v(b)$ for each pair of arcs $a,b \in A(M)$ such that the beginning point of $b$ belongs to $a$. For $k \geq 0$, the $k$-th power $D^k$ of $D$ has the same vertices as $D$ and $v(a) \to v(b)$ is an edge of $D^k$ when $a\neq b$ and the distance from $v(a)$ to $v(b)$ in $D$ is at most $k$. A unit circular-arc (UCA) model is a PCA model $U = (C,A)$ in which all the arcs have the same length $\ell+1$. If $\ell$, the length $c$ of $C$, and the extremes of the arcs of $A$ are integer, then $U$ is a $(c,\ell)$-CA model. For $i \geq 0$, the model $i \times U$ of $U$ is obtained by replacing each arc $(s,s+\ell+1)$ with the arc $(s,s+i\ell+1)$. If $U$ represents a digraph $D$, then $U$ is $k$-multiplicative when $i \times U$ represents $D^i$ for every $0 \leq i \leq k$. In this article we design a linear time algorithm to decide if a PCA model $M$ is equivalent to a $k$-multiplicative UCA model when $k$ is given as input. The algorithm either outputs a $k$-multiplicative UCA model $U$ equivalent to $M$ or a negative certificate that can be authenticated in linear time. Our main technical tool is a new characterization of those PCA models that are equivalent to $k$-multiplicative UCA models. For $k=1$, this characterization yields a new algorithm for the classical representation problem that is simpler than the previously known algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源