论文标题
全球解决方案的存在和不存在,具有退化系数的热方程
Existence and non-existence of global solutions for a heat equation with degenerate coefficients
论文作者
论文摘要
在本文中,我们将研究以下抛物面问题$ u_t -div(ω(x)\ nabla u)= h(t)f(t)f(t)f(u) + l(t)g(u)g(u)$,具有与$ c_b(\ mathbb {rsbb {r}^n)$的$ c_b(\ mathbb {r}^n)$的非负初始条件,其重量$ $ $ aunc属于$ ungs。 \ frac {2} {n}} $和功能$ f $,$ g $,$ h $和$ l $是非负和连续的。主要目标是建立非负解决方案的全球和非全球存在。此外,要介绍特定情况时,当$ h(t)\ sim t^r ~~(r> -1)$,$ l(t)\ sim t^s ~~(s> -1)$,$ f(u)= u^p $和$ g(u^p $ and $ g(u)=(u)=(u)=(1+u)[\ ln(1+u)] ni \ cite {lee-ni}。我们的结果扩展了Fujishima等人获得的结果。 \ cite {fujish}谁在$ h(t)= 1 $,$ l(t)= 0 $和$ f(u)= u^p $时工作。
In this paper, we will study the following parabolic problem $u_t - div(ω(x) \nabla u)= h(t) f(u) + l(t) g(u)$ with non-negative initial conditions pertaining to $C_b(\mathbb{R}^N)$, where the weight $ω$ is an appropriate function that belongs to the Munckenhoupt class $A_{1 + \frac{2}{N}}$ and the functions $f$, $g$, $h$ and $l$ are non-negative and continuous. The main goal is to establish of global and non-global existence of non-negative solutions. In addition, to present the particular case when $h(t) \sim t^r ~~ (r>-1)$, $l(t) \sim t^s ~~ (s>-1)$, $f(u) = u^p$ and $g(u)= (1+u)[\ln(1+u)]^p,$ we obtain both the so-called Fujita's exponent and the second critical exponent in the sense of Lee and Ni \cite{Lee-Ni}. Our results extend those obtained by Fujishima et al. \cite{Fujish} who worked when $h(t)=1$, $l(t)=0$ and $f(u)=u^p $.