论文标题

具有化学势的高衍生全息图

Higher-derivative holography with a chemical potential

论文作者

Cano, Pablo A., Murcia, Ángel, Sánchez, Alberto Rivadulla, Zhang, Xuao

论文摘要

我们对以完全分析和非扰动的方式进行了一项广泛的研究。我们通过引入电磁准学重力的$ d $维版本来实现这一目标:更高衍生的重力和电磁理论,这些理论不传播任何额外的自由度,并且可以分析地研究带电的黑洞解决方案。这些理论包含非最小耦合,在全息环境中,会产生修改的$ \ langle jj \ rangle $ colorelator,以及我们计算的系数的一般$ \ langle tjj \ rangle $结构。我们通过施加CFT单位性和能量阳性(我们表明等同于批量的因果关系)以及从弱重力猜想中构成正面脑界限来限制理论的耦合。详细研究了有限化学电位上的双重等离子体的热力学特性,我们发现可能出现异国情调的零阶相变,但其中许多被物理约束排除。我们进一步计算了剪切粘度与熵密度比,并且我们表明它可以在尊重所有约束的同时将其提高到零,从而说明化学势足够大。我们还获得了带电的Rényi熵,我们观察到化学电位始终增加纠缠量,如果满足物理约束,则保留Rényi熵的通常特性。最后,我们计算扭曲运算符的缩放维度和磁反应,并提供了这些数量扩展与$ \ langle jj \ rangle $和$ \ langle tjj \ tjj \ rangle $之间的普遍关系的全息衍生。

We carry out an extensive study of the holographic aspects of any-dimensional higher-derivative Einstein-Maxwell theories in a fully analytic and non-perturbative fashion. We achieve this by introducing the $d$-dimensional version of Electromagnetic Quasitopological gravities: higher-derivative theories of gravity and electromagnetism that propagate no additional degrees of freedom and that allow one to study charged black hole solutions analytically. These theories contain non-minimal couplings, that in the holographic context give rise to a modified $\langle JJ\rangle$ correlator as well as to a general $\langle TJJ \rangle$ structure whose coefficients we compute. We constrain the couplings of the theory by imposing CFT unitarity and positivity of energy (which we show to be equivalent to causality in the bulk) as well as positive-entropy bounds from the weak gravity conjecture. The thermodynamic properties of the dual plasma at finite chemical potential are studied in detail, and we find that exotic zeroth-order phase transitions may appear, but that many of them are ruled out by the physical constraints. We further compute the shear viscosity to entropy density ratio, and we show that it can be taken to zero while respecting all the constraints, providing that the chemical potential is large enough. We also obtain the charged Rényi entropies and we observe that the chemical potential always increases the amount of entanglement and that the usual properties of Rényi entropies are preserved if the physical constraints are met. Finally, we compute the scaling dimension and magnetic response of twist operators and we provide a holographic derivation of the universal relations between the expansion of these quantities and the coefficients of $\langle JJ\rangle$ and $\langle TJJ \rangle$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源