论文标题
有效希尔伯特的全球领域定理
Effective Hilbert's Irreducibility Theorem for global fields
论文作者
论文摘要
我们证明了希尔伯特(Hilbert)在全球领域$ k $上的多项式定理的一种有效形式。更确切地说,我们为\ Mathcal {o} _K $中的专业数量$ t \提供了有效的界限,这些$ t \ in \ Mathcal {o} _k $不能保留给定的不可约多项式$ f(t,y)\ in k [t,y] $的不可约性多项式$ f(t,y)\。界限在多项式$ f(t,y)$的高度和程度上是明确的,并且在\ Mathcal {o} _k $的参数$ t \ in的大小方面是最佳的。我们的证明以统一的方式涉及功能字段和数字字段案例。
We prove an effective form of Hilbert's irreducibility theorem for polynomials over a global field $K$. More precisely, we give effective bounds for the number of specializations $t\in \mathcal{O}_K$ that do not preserve the irreducibility or the Galois group of a given irreducible polynomial $F(T,Y)\in K[T,Y]$. The bounds are explicit in the height and degree of the polynomial $F(T,Y)$, and are optimal in terms of the size of the parameter $t\in \mathcal{O}_K$. Our proofs deal with the function field and number field cases in a unified way.