论文标题
(DIS)随机常规图上的分类分区
(Dis)assortative Partitions on Random Regular Graphs
论文作者
论文摘要
我们研究随机$ d $ regular图的分类和分离分区的问题。图中的节点分为两个非空组。在分类分区中,每个节点都需要至少$ h $的邻居参加自己的小组。在拆卸分区中,他们需要少于$ h $ hug的邻居才能进入自己的小组。使用基于对信念传播算法的分析的空腔方法,我们确定了这些分区存在的参数$(d,h)$的组合具有很高的概率,而它们不存在。对于$ h> \ lceil \ frac {d} {2} \ rceil $,我们确定分类分区问题解决方案的结构与所谓的冷冻1RSB相对应。这需要有效地找到这些分区的算法硬度的猜想。对于$ h \ le \ lceil \ frac {d} {2} \ rceil $,我们认为,对于所有$ d $,分类分区问题平均容易算法。此外,我们还提供了有关分类分区问题与拆卸性分区问题之间的渐近等效性的争论,与自旋玻璃中的单旋纤维稳定状态的问题密切相关。在自旋眼镜的背景下,我们对算法硬度的结果暗示了一个猜想,即很难找到构想单个自旋翻转稳定状态,这可能是观察到玻璃系统中物理动力学表现出与边际稳定性的融合的普遍原因。
We study the problem of assortative and disassortative partitions on random $d$-regular graphs. Nodes in the graph are partitioned into two non-empty groups. In the assortative partition every node requires at least $H$ of their neighbors to be in their own group. In the disassortative partition they require less than $H$ neighbors to be in their own group. Using the cavity method based on analysis of the Belief Propagation algorithm we establish for which combinations of parameters $(d,H)$ these partitions exist with high probability and for which they do not. For $H>\lceil \frac{d}{2} \rceil $ we establish that the structure of solutions to the assortative partition problems corresponds to the so-called frozen-1RSB. This entails a conjecture of algorithmic hardness of finding these partitions efficiently. For $H \le \lceil \frac{d}{2} \rceil $ we argue that the assortative partition problem is algorithmically easy on average for all $d$. Further we provide arguments about asymptotic equivalence between the assortative partition problem and the disassortative one, going trough a close relation to the problem of single-spin-flip-stable states in spin glasses. In the context of spin glasses, our results on algorithmic hardness imply a conjecture that gapped single spin flip stable states are hard to find which may be a universal reason behind the observation that physical dynamics in glassy systems display convergence to marginal stability.