论文标题

从偏好中推断出词典订购的奖励

Inferring Lexicographically-Ordered Rewards from Preferences

论文作者

Hüyük, Alihan, Zame, William R., van der Schaar, Mihaela

论文摘要

在许多领域,建模代理对一组替代方案的偏好是主要问题。主要的方法是找到一个单一的奖励/效用功能,其属性比产生较低奖励的替代方案所产生较高奖励的替代方案。但是,在许多情况下,偏好是基于多个,经常竞争的目标。单个奖励功能不足以代表此类偏好。本文提出了一种推断代理观察到的偏好基于多目标奖励表示的方法。我们将代理在不同目标上的优先级建模为输入词典,因此仅当代理在较高优先级的目标方面漠不关心时,优先级较低的目标就很重要。我们提供了两个受癌症治疗启发的医疗保健中的示例应用程序,另一种是受器官移植的启发,以说明我们学习的词典订购的奖励如何可以更好地了解决策者的偏好,并在加强学习中使用时有助于改善政策。

Modeling the preferences of agents over a set of alternatives is a principal concern in many areas. The dominant approach has been to find a single reward/utility function with the property that alternatives yielding higher rewards are preferred over alternatives yielding lower rewards. However, in many settings, preferences are based on multiple, often competing, objectives; a single reward function is not adequate to represent such preferences. This paper proposes a method for inferring multi-objective reward-based representations of an agent's observed preferences. We model the agent's priorities over different objectives as entering lexicographically, so that objectives with lower priorities matter only when the agent is indifferent with respect to objectives with higher priorities. We offer two example applications in healthcare, one inspired by cancer treatment, the other inspired by organ transplantation, to illustrate how the lexicographically-ordered rewards we learn can provide a better understanding of a decision-maker's preferences and help improve policies when used in reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源