论文标题

通过分散获得大约最佳和多样的解决方案

Obtaining Approximately Optimal and Diverse Solutions via Dispersion

论文作者

Gao, Jie, Goswami, Mayank, S., Karthik C., Tsai, Meng-Tsung, Tsai, Shih-Yu, Yang, Hao-Tsung

论文摘要

对于计算优化问题的各种解决方案,人们一直存在兴趣。 1995年,由瑞典政府机构重新分配的动机。从那时起,研究人员研究了寻找跨越树木,路径,顶点覆盖,匹配等多种解决方案的复杂性。与PSP对解决方案的总重量有限制的PSP不同,最近的工作涉及找到最佳的各种解决方案。 但是,有时精确解决方案的空间可能太小,无法实现足够的多样性。在此激励的基础上,我们启动了获得足够多样化但大约最佳的优化问题解决方案的研究。正式地,鉴于整数$ k $,一个近似因子$ c $和一个优化问题的实例$ i $,我们的目标是获得一组$ k $ solutions to $ i $ a $ that a)都是$ c $ y y $ y $和b)最大化$ k $解决方案的多样性。因此,找到这种解决方案需要更好地理解优化函数的全球格局。 我们表明,鉴于解决方案空间上的任何度量,多样性量度作为解决方案之间的成对距离之和,可以通过结合分散和多标准优化的思想来解决此问题。我们首先将相关预算受限的优化(BCO)问题一般减少,其中一个目标函数将被最大化(最小化)受第二个目标函数的约束。然后,我们证明,对BCO的双重焦点可用于对不同的近似最佳解决方案问题进行双层开销。

There has been a long-standing interest in computing diverse solutions to optimization problems. Motivated by reallocation of governmental institutions in Sweden, in 1995 J. Krarup posed the problem of finding $k$ edge-disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer $k$, an approximation factor $c$, and an instance $I$ of an optimization problem, we aim to obtain a set of $k$ solutions to $I$ that a) are all $c$ approximately-optimal for $I$ and b) maximize the diversity of the $k$ solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. We show that, given any metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, this problem can be solved by combining ideas from dispersion and multicriteria optimization. We first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to be maximized (minimized) subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem with a little overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源