论文标题
在线跨度在公制空间中
Online Spanners in Metric Spaces
论文作者
论文摘要
给定一个度量空间$ \ MATHCAL {m} =(x,δ)$,加权图$ g $ the $ x $是$ \ Mathcal {m} $的公制$ t $ - spanner,如果每个$ u,v \ in x $,$ uny v \ in x $,$Δ($δ(u,v) $ g $中的最短路径度量。在本文中,我们在在线环境中的度量空间中为有限套装构建了跨度。在这里,我们得到了一系列点$(s_1,\ ldots,s_n)$的顺序,其中一次是一个点(即,在$ i $ step之后,我们看到$ s_i = \ {s_1,\ ldots,s_i \} $)。当新点到达时,允许算法将边缘添加到扳手,但是,不允许从扳手删除任何边缘。目的是为所有$ i $ $ s_i $保持$ t $ spanner $ g_i $,同时最小化边缘数量及其总重量。 我们在线构建$(1+ \ varepsilon)$ - euclidean $ d $ -space,$(2k-1)(1+ \ varepsilon)$ - 通用指标的跨度和$(2+ \ varepsilon)$ - 超X型的跨度。最值得注意的是,在欧几里得飞机上,我们构建了一个$(1+ \ varepsilon)$ - 具有竞争比$ o(\ varepsilon^{ - 3/2} \ log \ log \ varepsilon^{ - 1} { - 1} \ log n)$的竞争比(\ varepsilon^{ - 扳手,到MST。
Given a metric space $\mathcal{M}=(X,δ)$, a weighted graph $G$ over $X$ is a metric $t$-spanner of $\mathcal{M}$ if for every $u,v \in X$, $δ(u,v)\le d_G(u,v)\le t\cdot δ(u,v)$, where $d_G$ is the shortest path metric in $G$. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points $(s_1, \ldots, s_n)$, where the points are presented one at a time (i.e., after $i$ steps, we saw $S_i = \{s_1, \ldots , s_i\}$). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a $t$-spanner $G_i$ for $S_i$ for all $i$, while minimizing the number of edges, and their total weight. We construct online $(1+\varepsilon)$-spanners in Euclidean $d$-space, $(2k-1)(1+\varepsilon)$-spanners for general metrics, and $(2+\varepsilon)$-spanners for ultrametrics. Most notably, in Euclidean plane, we construct a $(1+\varepsilon)$-spanner with competitive ratio $O(\varepsilon^{-3/2}\log\varepsilon^{-1}\log n)$, bypassing the classic lower bound $Ω(\varepsilon^{-2})$ for lightness, which compares the weight of the spanner, to that of the MST.