论文标题

嵌合预测:结合计算模型和人类判断的概率预测

Chimeric forecasting: combining probabilistic predictions from computational models and human judgment

论文作者

McAndrew, Thomas, Codi, Allison, Cambeiro, Juan, Besiroglu, Tamay, Braun, David, Chen, Eva, de Cesaris, Luis Enrique Urtubey, Luk, Damon

论文摘要

对传染毒剂的轨迹的预测可以帮助指导公共卫生决策。一种预测的传统方法符合计算模型来构建数据并生成预测分布。但是,人类的判断可以访问与计算模型以及经验,直觉和主观数据相同的数据。我们提出了一个嵌合合奏 - 计算和人类判断预测的结合 - 是一种预测传染剂轨迹的新方法。从2021年1月到2021年6月,我们都要求两个通才人群,使用与COVID-19的预测中心相同的标准,以提交对未来两到三周的美国国家级别的事件案件和死亡的预测分布,并将这些人类判断的预测与COVID-COVID-COVID-COVID-COVID-CHIMASTERCERCECTIB的预测结合在一起,并将这些人类判断力结合在一起。我们发现与仅包括计算模型(仅计算模型)的整体相比,我们发现了一个嵌合合奏,可以改善事件案例的预测,并显示出对事件死亡的预测的相似性能。嵌合合奏是一种灵活,支持性的公共卫生工具,并显示出有望的传染剂传播的结果。

Forecasts of the trajectory of an infectious agent can help guide public health decision making. A traditional approach to forecasting fits a computational model to structured data and generates a predictive distribution. However, human judgment has access to the same data as computational models plus experience, intuition, and subjective data. We propose a chimeric ensemble -- a combination of computational and human judgment forecasts -- as a novel approach to predicting the trajectory of an infectious agent. Each month from January, 2021 to June, 2021 we asked two generalist crowds, using the same criteria as the COVID-19 Forecast Hub, to submit a predictive distribution over incident cases and deaths at the US national level either two or three weeks into the future and combined these human judgment forecasts with forecasts from computational models submitted to the COVID-19 Forecasthub into a chimeric ensemble. We find a chimeric ensemble compared to an ensemble including only computational models improves predictions of incident cases and shows similar performance for predictions of incident deaths. A chimeric ensemble is a flexible, supportive public health tool and shows promising results for predictions of the spread of an infectious agent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源