论文标题
曲率控制的几何透镜行为在自propelled胶体颗粒系统中
Curvature-Controlled Geometrical Lensing Behavior in Self-Propelled Colloidal Particle Systems
论文作者
论文摘要
在许多生物系统中,表面细胞的曲率生活在影响其集体特性的影响下。曲率同样应影响活性胶体颗粒的行为。我们使用分子模拟在高斯曲率(正和负)表面上的自旋转活性粒子表明曲率符号和大小可以改变系统的集体行为。曲率充当几何晶状体,并将运动诱导的相分离(MIPS)的临界密度转移到较低的正曲率值和负曲率的较高值的值,我们从理论上解释了球形和双曲空间中平行线的性质。由于缺陷模式的出现破坏了簇内部的结晶顺序,因此曲率还使密集的MIP簇流畅。使用我们的发现,我们设计了三个限制表面,从策略上结合了不同曲率的区域,以产生许多新型的动态相,包括在球状架上的循环mips,在球形酮上的波浪样MIP以及元主体上的簇波动。
In many biological systems, the curvature of the surfaces cells live on influence their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) that curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamic phases, including cyclic MIPS on sphercylinders, wave-like MIPS on spherocones, and cluster fluctuations on metaballs.