论文标题
基于区域的语义分解
Region-Based Semantic Factorization in GANs
论文作者
论文摘要
尽管在生成对抗网络(GAN)的潜在空间中,语义发现的快速发展,但现有方法要么仅限于找到全局属性,要么依靠许多细分掩码来识别本地属性。在这项工作中,我们提出了一种高效的算法,以分解甘恩学到的关于任意图像区域的潜在语义。具体而言,我们重新审视了预先训练的gan的局部操纵任务,并将基于区域的语义发现作为双重优化问题。通过适当定义的广义雷利商,我们设法解决了这个问题,而无需任何注释或培训。各种最先进的GAN模型的实验结果证明了我们的方法的有效性,以及它优于先前艺术在精确控制,区域鲁棒性,实施速度和使用简单性方面的优势。
Despite the rapid advancement of semantic discovery in the latent space of Generative Adversarial Networks (GANs), existing approaches either are limited to finding global attributes or rely on a number of segmentation masks to identify local attributes. In this work, we present a highly efficient algorithm to factorize the latent semantics learned by GANs concerning an arbitrary image region. Concretely, we revisit the task of local manipulation with pre-trained GANs and formulate region-based semantic discovery as a dual optimization problem. Through an appropriately defined generalized Rayleigh quotient, we manage to solve such a problem without any annotations or training. Experimental results on various state-of-the-art GAN models demonstrate the effectiveness of our approach, as well as its superiority over prior arts regarding precise control, region robustness, speed of implementation, and simplicity of use.