论文标题

基于区域的语义分解

Region-Based Semantic Factorization in GANs

论文作者

Zhu, Jiapeng, Shen, Yujun, Xu, Yinghao, Zhao, Deli, Chen, Qifeng

论文摘要

尽管在生成对抗网络(GAN)的潜在空间中,语义发现的快速发展,但现有方法要么仅限于找到全局属性,要么依靠许多细分掩码来识别本地属性。在这项工作中,我们提出了一种高效的算法,以分解甘恩学到的关于任意图像区域的潜在语义。具体而言,我们重新审视了预先训练的gan的局部操纵任务,并将基于区域的语义发现作为双重优化问题。通过适当定义的广义雷利商,我们设法解决了这个问题,而无需任何注释或培训。各种最先进的GAN模型的实验结果证明了我们的方法的有效性,以及它优于先前艺术在精确控制,区域鲁棒性,实施速度和使用简单性方面的优势。

Despite the rapid advancement of semantic discovery in the latent space of Generative Adversarial Networks (GANs), existing approaches either are limited to finding global attributes or rely on a number of segmentation masks to identify local attributes. In this work, we present a highly efficient algorithm to factorize the latent semantics learned by GANs concerning an arbitrary image region. Concretely, we revisit the task of local manipulation with pre-trained GANs and formulate region-based semantic discovery as a dual optimization problem. Through an appropriately defined generalized Rayleigh quotient, we manage to solve such a problem without any annotations or training. Experimental results on various state-of-the-art GAN models demonstrate the effectiveness of our approach, as well as its superiority over prior arts regarding precise control, region robustness, speed of implementation, and simplicity of use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源