论文标题

Mixkg:在知识图中混合更难的负面样本

MixKG: Mixing for harder negative samples in knowledge graph

论文作者

Che, Feihu, Yang, Guohua, Shao, Pengpeng, Zhang, Dawei, Tao, Jianhua

论文摘要

知识图嵌入〜(KGE)旨在将实体和关系代表许多现实世界应用中的低维矢量。实体和关系的表示是通过对比的积极和消极的三胞胎来学习的。因此,高质量的负样品在KGE中极为重要。但是,当前的KGE模型要么依赖于简单的负抽样方法,因此很难获得信息性的负三胞胎。或采用复杂的对抗方法,需要更多的培训数据和策略。此外,这些方法只能使用现有实体构建负三联体,这限制了探索更难的负三胞胎的潜力。为了解决这些问题,我们采用混合操作来为知识图生成更硬的负样本,并引入一种廉价但有效的方法称为Mixkg。从技术上讲,MixKG首先提出了两种标准,以在采样底片之间过滤硬负三重态:基于评分函数并基于正确的实体相似性。然后,MixKG通过配对选定的硬质底片的凸组合综合了更硬的负样品。在两个公共数据集和四种经典KGE方法上进行的实验表明,MixKG优于先前的负抽样算法。

Knowledge graph embedding~(KGE) aims to represent entities and relations into low-dimensional vectors for many real-world applications. The representations of entities and relations are learned via contrasting the positive and negative triplets. Thus, high-quality negative samples are extremely important in KGE. However, the present KGE models either rely on simple negative sampling methods, which makes it difficult to obtain informative negative triplets; or employ complex adversarial methods, which requires more training data and strategies. In addition, these methods can only construct negative triplets using the existing entities, which limits the potential to explore harder negative triplets. To address these issues, we adopt mixing operation in generating harder negative samples for knowledge graphs and introduce an inexpensive but effective method called MixKG. Technically, MixKG first proposes two kinds of criteria to filter hard negative triplets among the sampled negatives: based on scoring function and based on correct entity similarity. Then, MixKG synthesizes harder negative samples via the convex combinations of the paired selected hard negatives. Experiments on two public datasets and four classical KGE methods show MixKG is superior to previous negative sampling algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源