论文标题

使用GNN预测构建的超材料的变形机制

Predicting deformation mechanisms in architected metamaterials using GNN

论文作者

Indurkar, Padmeya Prashant, Karlapati, Sri, Shaikeea, Angkur Jyoti Dipanka, Deshpande, Vikram S.

论文摘要

晶格架构机械超材料的设计和建模方面的范式主要限于传统的数值方法,例如有限元分析。最近,机器学习和人工智能技术的使用变得流行,在这里,我们将这些想法扩展到了架构的超材料。我们表明,基于桁架的晶格与计算图具有自然相似之处,这些计算图是图形神经网络(GNNS)快速新兴领域的输入。一个包含数千个非常复杂的晶格的数据集使用GNN进行了训练,以预测潜在的显性变形机制。拉伸和弯曲。在以前看不见的复杂晶格数据集上,受过训练的GNN的精度> 90%。这种基于图形的学习超材料具有预测一系列特性的能力,从弹性模量到断裂韧性,并承诺AI驱动的具有最高特性的新兴超材料的发现。

The present paradigm in design and modelling of lattice architected mechanical metamaterials is mostly limited to traditional numerical methods like finite element analysis. Recently, the use of machine learning and artificial intelligence techniques have become popular and here we extend these ideas to architected metamaterials. We show that truss based lattices have a natural resemblance to computational graphs which serve as an input for the rapidly emerging field of graph neural networks (GNNs). A dataset comprising thousands of such extremely complex lattices is trained using a GNN to predict the underlying dominant deformation mechanism viz. stretching and bending. The trained GNN achieves > 90% accuracy on a previously unseen complex lattice dataset. Such graph-based learning of metamaterials has the capability to predict a range of properties, from elastic moduli to fracture toughness and promises AI driven discovery of emergent metamaterials possessing superlative properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源