论文标题

使用人工智能和真实的星系图像来限制星系形成模拟中的参数

Using Artificial Intelligence and real galaxy images to constrain parameters in galaxy formation simulations

论文作者

Macciò, Andrea V., Ali-Dib, Mohamad, Vulanović, Pavle, Noori, Hind Al, Walter, Fabian, Krieger, Nico, Buck, Tobias

论文摘要

宇宙星系形成模拟仍然受其空间/质量分辨率的限制,不能从第一原理中建模某些过程,例如恒星形成,这是驱动星系进化的关键。结果,他们仍然依靠一组“有效参数”,这些参数试图捕获量表和无法直接解决模拟中无法解决的物理过程。在这项研究中,我们表明,可以使用应用于星系的真实图像和模拟图像的机器学习技术来区分这些参数的不同值,从而利用天文图像的完整信息内容,而不是将其折叠成诸如大小或恒星/气体量之类的有限值。在这项工作中,我们将方法应用于Nihao模拟以及附近星系中HI地图的事物以及VLA-ANGST观察,以测试恒星形成密度阈值$ n $的不同值的能力,以复制观察到的HI地图。我们表明,观察结果表明需要高价值为$ n \ gtrsim 80 $,cm $^{ - 3} $(尽管确切的数值值是模型依赖性的),这对星系中的暗物质分布产生了重要影响。我们的研究表明,通过创新方法,可以充分利用星系图像的信息内容,并以可解释的,非参数和定量方式比较模拟和观察。

Cosmological galaxy formation simulations are still limited by their spatial/mass resolution and cannot model from first principles some of the processes, like star formation, that are key in driving galaxy evolution. As a consequence they still rely on a set of 'effective parameters' that try to capture the scales and the physical processes that cannot be directly resolved in the simulation. In this study we show that it is possible to use Machine Learning techniques applied to real and simulated images of galaxies to discriminate between different values of these parameters by making use of the full information content of an astronomical image instead of collapsing it into a limited set of values like size, or stellar/ gas masses. In this work we apply our method to the NIHAO simulations and the THINGS and VLA-ANGST observations of HI maps in nearby galaxies to test the ability of different values of the star formation density threshold $n$ to reproduce observed HI maps. We show that observations indicate the need for a high value of $n \gtrsim 80$ ,cm$^{-3}$ (although the exact numerical value is model-dependent), which has important consequences for the dark matter distribution in galaxies. Our study shows that with innovative methods it is possible to take full advantage of the information content of galaxy images and compare simulations and observations in an interpretable, non-parametric and quantitative manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源