论文标题
k^{th}在polydisk上订购倾斜的汉克运算符
k^{th} order Slant Hankel Operators on the Polydisk
论文作者
论文摘要
在本文中,我们启动了k^{th}序列的倾斜hankel oberators在l^2(t^n)上的倾斜hankel oberator,大于或等于2和n,大于或等于1,其中t^n表示n-torus。我们给出了l^2(t^n)上有界运算符的必要条件,使其成为k^{th}秩序倾斜的汉克尔,并讨论其交换性,紧凑性,不良和等轴测特性。
In this paper, we initiate the notion of k^{th} order slant Hankel operators on L^2(T^n) for k greater than or equal to 2 and n greater than or equal to 1 where T^n denotes the n-torus. We give the necessary and sufficient condition for a bounded operator on L^2(T^n) to be a k^{th} order slant Hankel and discuss their commutative, compactness, hyponormal and isometric property.