论文标题

数据驱动的增强模型减少了计算流体动力学中分叉模型的模型

Data-Driven Enhanced Model Reduction for Bifurcating Models in Computational Fluid Dynamics

论文作者

Hess, Martin W., Quaini, Annalisa, Rozza, Gianluigi

论文摘要

我们研究了各种数据驱动的方法,以增强基于投影的模型还原技术,目的是捕获分叉溶液。为了显示数据驱动的增强功能的有效性,我们专注于不可压缩的Navier-Stokes方程和不同类型的分叉。为了使解决方案通过HOPF分叉,我们提出了一种将正交分解与Hankel动态模式分解相结合的方法。为了近似接近干草叉分叉的解决方案,我们将局部还原模型与人工神经网络相结合。显示了几个数值示例,以证明所提出的方法的可行性。

We investigate various data-driven methods to enhance projection-based model reduction techniques with the aim of capturing bifurcating solutions. To show the effectiveness of the data-driven enhancements, we focus on the incompressible Navier-Stokes equations and different types of bifurcations. To recover solutions past a Hopf bifurcation, we propose an approach that combines proper orthogonal decomposition with Hankel dynamic mode decomposition. To approximate solutions close to a pitchfork bifurcation, we combine localized reduced models with artificial neural networks. Several numerical examples are shown to demonstrate the feasibility of the presented approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源