论文标题

叶子和稳定地图

Foliations and stable maps

论文作者

Toën, Bertrand, Vezzosi, Gabriele

论文摘要

本文是正在进行的一系列关于通过派生的代数几何形状研究代数品种研究的作品的一部分。我们在这里专注于全球定义的向量场及其代数积分曲线的全局行为。对于带有全球矢量字段$ν$的平滑且合适的$ x $,我们认为诱导的向量场$ν_{g,n} $在稳定地图的衍生堆栈上,属于$ n $标记点的属$ g $,分为$ x $。当$(g,n)$是$(0,2)$或$(1,0)$时,$ν_{g,n} $的衍生零件定义了$ n $ν$的适当\ emph {emph {模量。当$(g,n)=(0,2)$代数轨迹的行为非常类似于从$ν$的一个零到另一个的理性代数路径,尤其是可以组成的。该构图由格罗莫夫(Gromov-Witten)理论中通常的粘合图表示,我们使用它给出了三个分类构造,这些构造在某种意义上是通过删除的,具有不同分类层面的不同分类级别。特别是为了做到这一点,我们必须处理非Quasi-Smooth派生堆栈的虚拟基本类别。当$(g,n)=(1,0)$时,$ν_{1,0} $的零可能被认为是平滑真实歧管上向量字段的定期轨道的代数类似物。特别是,我们提出了一个Zeta函数,以计算$ν_{1,0} $的零,我们想将其视为Ruelle Dynamical Zeta函数的代数版本。我们以简短的指示结束了该论文,以考虑如何将这些结果扩展到一般的一维叶片$ F $的情况下,考虑到$ f $ equivariant稳定地图的派生堆栈。

This paper is part of an ongoing series of works on the study of foliations on algebraic varieties via derived algebraic geometry. We focus here on the specific case of globally defined vector fields and the global behaviour of their algebraic integral curves. For a smooth and proper variety $X$ with a global vector field $ν$, we consider the induced vector field $ν_{g,n}$ on the derived stack of stable maps, of genus $g$ with $n$ marked points, to $X$. When $(g,n)$ is either $(0,2)$ or $(1,0)$, the derived stack of zeros of $ν_{g,n}$ defines a proper \emph{moduli of algebraic trajectories} of $ν$. When $(g,n)=(0,2)$ algebraic trajectories behave very much like rational algebraic paths from one zero of $ν$ to another, and in particular they can be composed. This composition is represented by the usual gluing maps in Gromov-Witten theory, and we use it give three categorical constructions, of different categorical levels, related, in a certain sense, by decategorification. In order to do this, in particular, we have to deal with virtual fundamental classes of non-quasi-smooth derived stacks. When $(g,n)=(1,0)$, zeros of $ν_{1,0}$ might be thought as algebraic analogues of periodic orbits of vector fields on smooth real manifolds. In particular, we propose a Zeta function counting the zeros of $ν_{1,0}$, that we like to think of as an algebraic version of Ruelle's dynamical Zeta function. We conclude the paper with a brief indication on how to extend these results to the case of general one dimensional foliation $F$, by considering the derived stack of $F$-equivariant stable maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源