论文标题
梯度几乎是para-icricci般的孤子,在para-sasaki like riemannian $π$ -manifolds
Gradient almost para-Ricci-like solitons on para-Sasaki-like Riemannian $Π$-manifolds
论文作者
论文摘要
研究了梯度在类似于帕拉 - 萨萨基(Para-sasaki)的riemannian $π$ manifolds上几乎类似于para-ricci的孤子。证明这些对象具有恒定的孤子系数。对于所研究的孤子表明,所考虑的两个指标的相应标量曲率是相等且恒定的,并且其ricci张量是垂直分量的恒定倍数。提供了三维para-sasaki般的Riemannian $π$ -Manifold的明确示例,以支持证明的断言。
Gradient almost para-Ricci-like solitons on para-Sasaki-like Riemannian $Π$-manifolds are studied. It is proved that these objects have constant soliton coefficients. For the soliton under study is shown that the corresponding scalar curvatures of the considered both metrics are equal and constant and its Ricci tensor is a constant multiple of the vertical component. Explicit example of a 3-dimensional para-Sasaki-like Riemannian $Π$-manifold is provided in support of the proved assertions.