论文标题
涡旋状态的相锁物质波干涉仪
Phase-locking matter-wave interferometer of vortex states
论文作者
论文摘要
具有不同线性动量的超速原子的物质波干涉仪已在理论和实验中进行了广泛的研究。具有不同角动量的涡流波波干涉仪可作为测量旋转,原子间相互作用,几何相等的量子传感器。在这里,我们报告了通过将光学角动量转移到超级托管液中的涡流物质波动干涉计的首次实验实现。在仅填充两个自旋状态的原子的无损干涉仪中,我们证明了两个自旋状态中的干扰物之间的相位差已锁定在$π$上。我们还证明了这种相位外关系的鲁棒性,该关系与两个干扰涡流状态之间的角度摩托差不多,拉曼光场的组成和冷凝水的扩展。实验结果与量子力学中波数据包的统一演化的计算非常吻合。这项工作为构建量子传感器并测量量子气中的原子相关性打开了一种新的方法。
Matter-wave interferometer of ultracold atoms with different linear momenta has been extensively studied in theory and experiment. The vortex matter-wave interferometer with different angular momenta is applicable as a quantum sensor for measuring the rotation, interatomic interaction, geometric phase, etc. Here we report the first experimental realization of a vortex matter-wave interferometer by coherently transferring the optical angular momentum to an ultracold Bose condensate. After producing a lossless interferometer with atoms only populating the two spin states, we demonstrate that the phase difference between the interferences in the two spin states is locked on $π$. We also demonstrate the robustness of this out-of-phase relation, which is independent of the angular-momentum difference between the two interfering vortex states, constituent of Raman optical fields and expansion of the condensate. The experimental results agree well with the calculation from the unitary evolution of wave packet in quantum mechanics. This work opens a new way to build a quantum sensor and measure the atomic correlation in quantum gases.