论文标题

通过量子数据进行多体定位的可扩展方法

Scalable approach to many-body localization via quantum data

论文作者

Gresch, Alexander, Bittel, Lennart, Kliesch, Martin

论文摘要

我们对量子数据如何允许实用的解决方案进行其他困难的计算问题感兴趣。来自量子多体物理学的众所周知的困难现象是多体定位(MBL)的出现。到目前为止,已经避免了全面的分析。特别是,希尔伯特空间维度的指数增长挑战了数值研究。由于这些研究中的许多研究都依赖于系统的哈密顿量的确切对角线化,因此只能访问小型系统尺寸。在这项工作中,我们提出了一种高度灵活的基于神经网络的学习方法,该方法一旦给出培训数据,就可以规避任何计算昂贵的步骤。通过这种方式,我们可以有效地估计MBL的共同指标,例如相邻的间隙比或熵量。我们的估计器可以立即对来自各种系统尺寸的数据进行培训,从而赋予从较小到较大数据的推断的能力。此外,使用转移学习我们表明,已经是二维特征向量足以在各种能量密度下获得几个不同的指标。我们希望我们的方法可以应用于大规模量子实验,以提供对量子多体物理学的新见解。

We are interested in how quantum data can allow for practical solutions to otherwise difficult computational problems. A notoriously difficult phenomenon from quantum many-body physics is the emergence of many-body localization (MBL). So far, is has evaded a comprehensive analysis. In particular, numerical studies are challenged by the exponential growth of the Hilbert space dimension. As many of these studies rely on exact diagonalization of the system's Hamiltonian, only small system sizes are accessible. In this work, we propose a highly flexible neural network based learning approach that, once given training data, circumvents any computationally expensive step. In this way, we can efficiently estimate common indicators of MBL such as the adjacent gap ratio or entropic quantities. Our estimator can be trained on data from various system sizes at once which grants the ability to extrapolate from smaller to larger ones. Moreover, using transfer learning we show that already a two-dimensional feature vector is sufficient to obtain several different indicators at various energy densities at once. We hope that our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源