论文标题
OmniSyn:与宽基线全景合成360个视频
OmniSyn: Synthesizing 360 Videos with Wide-baseline Panoramas
论文作者
论文摘要
诸如Google Street View和Bing Streetside之类的沉浸式地图提供了全景的真实景观。但是,这些全景只能沿着所采取的路径稀疏地间隔可用,从而导致导航期间的视觉不连续性。以前的艺术合成通常建立在一组透视图像,一对立体图像或单眼图像的基础上,但几乎没有检查宽基线全景,这些全景广泛在商业平台中广泛采用,以优化带宽和存储使用。在本文中,我们利用了宽基线全景的独特特征和现在的Omnisyn,这是一种新型的宽基线全景综合的新型管道。 Omnisyn使用球形成本量和单眼跳过连接预测全向深度图,在360°图像中呈现网格,并通过融合网络合成中间视图。我们通过全面的实验结果证明了Omnisyn的有效性,包括与Carla和Matterport数据集的最新方法,消融研究以及有关街头视图的概括研究的比较。我们设想我们的工作可能会激发未来的这项未引起的现实世界任务的未来研究,并最终为导航沉浸式地图带来了更流畅的经验。
Immersive maps such as Google Street View and Bing Streetside provide true-to-life views with a massive collection of panoramas. However, these panoramas are only available at sparse intervals along the path they are taken, resulting in visual discontinuities during navigation. Prior art in view synthesis is usually built upon a set of perspective images, a pair of stereoscopic images, or a monocular image, but barely examines wide-baseline panoramas, which are widely adopted in commercial platforms to optimize bandwidth and storage usage. In this paper, we leverage the unique characteristics of wide-baseline panoramas and present OmniSyn, a novel pipeline for 360° view synthesis between wide-baseline panoramas. OmniSyn predicts omnidirectional depth maps using a spherical cost volume and a monocular skip connection, renders meshes in 360° images, and synthesizes intermediate views with a fusion network. We demonstrate the effectiveness of OmniSyn via comprehensive experimental results including comparison with the state-of-the-art methods on CARLA and Matterport datasets, ablation studies, and generalization studies on street views. We envision our work may inspire future research for this unheeded real-world task and eventually produce a smoother experience for navigating immersive maps.