论文标题
在非零偏度和WIGNER分布中领先的扭曲GTMD在Boost不变的纵向位置空间中
Leading twist GTMDs at nonzero skewness and Wigner distributions in boost-invariant longitudinal position space
论文作者
论文摘要
我们研究了由软壁ADS/QCD促进的核子的轻正面夸克模型中的非零偏斜度的领先扭曲夸克横向动量分布(GTMD)。 Boost-Invariant纵向坐标,$σ= \ frac {1} {2} {2} b^ - p^+$,被识别为偏度的傅立叶结合物。 GTMD相对于偏度变量$ξ$的傅立叶变换可用于在Boost-Invariant纵向位置空间$σ$中提供Wigner分布,将坐标为轻时时间,$τ= t+z/c $。纵向位置空间中的Wigner分布表现出衍射模式,类似于光学中波的衍射。
We investigate the leading twist quark generalized transverse momentum distributions (GTMDs) at nonzero skewness in a light-front quark-diquark model for the nucleon motivated by soft-wall AdS/QCD. The boost-invariant longitudinal coordinate, $σ=\frac{1}{2} b^- P^+$, is identified as the Fourier conjugate of the skewness. The Fourier transform of the GTMDs with respect to the skewness variable $ξ$ can be employed to provide the Wigner distributions in the boost-invariant longitudinal position space $σ$, the coordinate conjugate to light-front time, $τ=t+z/c$. The Wigner distributions in the longitudinal position space exhibit diffraction patterns, which are analogous to the diffractive scattering of a wave in optics.