论文标题
了解通用多翼半学的三维量子厅效应
Understanding the three-dimensional quantum Hall effect in generic multi-Weyl semimetals
论文作者
论文摘要
三维Weyl半学(WSM)中的量子大厅的效应受到费米环的出现的极大关注,其中基础二维霍尔电导率(即板霍尔电导率)显示出量化的高原。考虑到多重Weyl半含量(MWSM)的倾斜晶格模型,我们会系统地研究平行和垂直(与Weyl节点的分离)存在的情况下的Landau级别(LLS)和磁性功能电导率探索倾斜和非线性在分散体中的影响。我们利用两个(单个)节点低能模型来定性地解释了中间隙性手性(手性交叉)在晶格上的出现,以$ \ mathbf {b} \ parallel z $($ \ \ \ mathbf {b} \ {b} \ paratele x $)。值得注意的是,我们发现,即使两个Weyl节点项目在两个相对的表面上向单个费米上的点上的两个weyl节点项目,也将其量化厅的电导率量化为$ \ mathbf {b} \并行z $,从而形成了一个以$ k_z $为$ k_z $的费米循环。另一方面,Fermi循环在两个相对的表面上连接两个不同的费米点,其中$ k_x $是良好的量子数,导致$ \ mathbf {b} \ paratele x $的板霍尔电导率的量化。在$ \ mathbf {b} \ Parallel x $($ \ Mathbf {B} \ Parallel Z $)的II阶段中,量化几乎丢失(完美保留)。有趣的是,相邻量化高原之间的跳跃曲线在上述两种情况下都随拓扑充电而变化。动量综合的三维大厅电导率未量化;但是,它带有手性LLS的签名,因为导致对小$μ$的$μ$的线性依赖性。随着基础WSM的倾斜(拓扑电荷)的增加,线性区(其斜率)会减小(增加)。
The quantum Hall effect in three-dimensional Weyl semimetal (WSM) receives significant attention for the emergence of the Fermi loop where the underlying two-dimensional Hall conductivity, namely, sheet Hall conductivity, shows quantized plateaus. Considering the tilted lattice models for multi Weyl semimetals (mWSMs), we systematically study the Landau levels (LLs) and magneto-Hall conductivity in the presence of parallel and perpendicular (with respect to the Weyl node's separation) magnetic field, i.e., $\mathbf{ B}\parallel z$ and $\mathbf{B}\parallel x$, to explore the impact of tilting and non-linearity in the dispersion. We make use of two (single) node low-energy models to qualitatively explain the emergence of mid-gap chiral (linear crossing of chiral) LLs on the lattice for $\mathbf{ B}\parallel z$ ($\mathbf{ B}\parallel x$). Remarkably, we find that the sheet Hall conductivity becomes quantized for $\mathbf{ B}\parallel z$ even when two Weyl nodes project onto a single Fermi point in two opposite surfaces, forming a Fermi loop with $k_z$ as the good quantum number. On the other hand, the Fermi loop, connecting two distinct Fermi points in two opposite surfaces, with $k_x$ being the good quantum number, causes the quantization in sheet Hall conductivity for $\mathbf{ B}\parallel x$. The quantization is almost lost (perfectly remained) in the type-II phase for $\mathbf{ B}\parallel x$ ($\mathbf{ B}\parallel z$). Interestingly, the jump profiles between the adjacent quantized plateaus change with the topological charge for both of the above cases. The momentum-integrated three-dimensional Hall conductivity is not quantized; however, it bears the signature of chiral LLs as resulting in the linear dependence on $μ$ for small $μ$. The linear zone (its slope) reduces (increases) as the tilt (topological charge) of the underlying WSM increases.