论文标题

学习连续物理的连续模型

Learning continuous models for continuous physics

论文作者

Krishnapriyan, Aditi S., Queiruga, Alejandro F., Erichson, N. Benjamin, Mahoney, Michael W.

论文摘要

随着时间的流逝,不断发展的动力系统在整个科学和工程中无处不在。机器学习(ML)提供了数据驱动的方法来建模和预测此类系统的动态。这种方法的核心问题是,使用不知道潜在的连续性属性的ML方法,通常对离散数据进行了ML模型。这导致模型通常不会捕获任何潜在的连续动态 - 无论是感兴趣的系统还是任何相关系统。为了应对这一挑战,我们基于数值分析理论开发了收敛测试。我们的测试验证了模型是否学会了能够准确近似基础连续动力学的函数。未能通过该测试的模型无法捕获相关的动态,因此为许多科学预测任务提供了有限的实用性;通过该测试的模型可以通过多种方式更好地插值和更好的外推。我们的结果说明了如何将原则性的数值分析方法与现有的ML培训/测试方法结合在一起,以验证科学和工程应用的模型。

Dynamical systems that evolve continuously over time are ubiquitous throughout science and engineering. Machine learning (ML) provides data-driven approaches to model and predict the dynamics of such systems. A core issue with this approach is that ML models are typically trained on discrete data, using ML methodologies that are not aware of underlying continuity properties. This results in models that often do not capture any underlying continuous dynamics -- either of the system of interest, or indeed of any related system. To address this challenge, we develop a convergence test based on numerical analysis theory. Our test verifies whether a model has learned a function that accurately approximates an underlying continuous dynamics. Models that fail this test fail to capture relevant dynamics, rendering them of limited utility for many scientific prediction tasks; while models that pass this test enable both better interpolation and better extrapolation in multiple ways. Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源