论文标题

感觉坏人:通过Facebook挑战的镜头解剖自动仇恨模因检测

Feels Bad Man: Dissecting Automated Hateful Meme Detection Through the Lens of Facebook's Challenge

论文作者

Jennifer, Catherine, Tahmasbi, Fatemeh, Blackburn, Jeremy, Stringhini, Gianluca, Zannettou, Savvas, De Cristofaro, Emiliano

论文摘要

互联网模因已成为一种主要的交流方法;然而,与此同时,它们也越来越多地被用来倡导极端主义和促进贬义信念。尽管如此,我们对模因的哪些知觉方面引起这种现象没有牢固的理解。在这项工作中,我们评估了当前最新的多模式学习模型对可恨模因检测的功效,尤其是在其跨平台上的普遍性方面的功效。我们使用两个基准数据集,其中包括4chan的“政治上不正确”板(/pol/)和Facebook的仇恨模因挑战数据集中的12,140和10,567张图像,以训练竞争对手的顶级机器学习模型,以发现与Benignign的最突出的功能,从而发现了最突出的功能。我们进行了三个实验,以确定多模式对分类绩效的重要性,边缘网络社区在主流社交平台上的影响力,反之亦然,以及模型在4chan Memes上的学习转移性。我们的实验表明,模因的图像特征比其文本内容提供了更多的信息。我们还发现,在模因中开发用于在线仇恨言论的当前系统需要进一步专注于其视觉元素,以改善其对潜在的文化内涵的解释,这意味着多模型模型无法充分掌握模因中仇恨言论的复杂性,并在社交媒体平台上推广。

Internet memes have become a dominant method of communication; at the same time, however, they are also increasingly being used to advocate extremism and foster derogatory beliefs. Nonetheless, we do not have a firm understanding as to which perceptual aspects of memes cause this phenomenon. In this work, we assess the efficacy of current state-of-the-art multimodal machine learning models toward hateful meme detection, and in particular with respect to their generalizability across platforms. We use two benchmark datasets comprising 12,140 and 10,567 images from 4chan's "Politically Incorrect" board (/pol/) and Facebook's Hateful Memes Challenge dataset to train the competition's top-ranking machine learning models for the discovery of the most prominent features that distinguish viral hateful memes from benign ones. We conduct three experiments to determine the importance of multimodality on classification performance, the influential capacity of fringe Web communities on mainstream social platforms and vice versa, and the models' learning transferability on 4chan memes. Our experiments show that memes' image characteristics provide a greater wealth of information than its textual content. We also find that current systems developed for online detection of hate speech in memes necessitate further concentration on its visual elements to improve their interpretation of underlying cultural connotations, implying that multimodal models fail to adequately grasp the intricacies of hate speech in memes and generalize across social media platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源