论文标题
为分子系统的深度变异量子质量构建本地碱基
Constructing Local Bases for a Deep Variational Quantum Eigensolver for Molecular Systems
论文作者
论文摘要
当前的量子计算机的量子数和相干时间的数量受到限制,从而以足够的忠诚度约束算法。变性量子本质量(VQE)是一种算法,可以找到量子系统的近似基态,甚至可以在这种设备上使用。深VQE [K. Fujii等人,Arxiv:2007.10917]是原始VQE算法的扩展,该算法采用了一种分裂和争议的方法来放松硬件需求。尽管深VQE已成功地用于自旋模型和周期材料,但其在分子上的有效性仍未得到探索。在这里,我们讨论了应用于量子化学问题的深VQE算法的性能。具体而言,我们检查了不同的子分数方法,并比较了它们在10 H原子的特鲁伊克分子以及13 H原子版本上的精度和复杂性。此外,我们研究了自然发生的分子视网膜的性能。这项工作还提出了多种方法来降低计算分子基态所需的量子数。我们发现,深VQE可以模拟基态的电子相关能量低于1%,从而有助于我们在某些情况下达到化学精度。准确性差异和Qubits的减少突出了基础创建方法对深VQE的影响。
Current quantum computers are limited in the number of qubits and coherence time, constraining the algorithms executable with sufficient fidelity. The variational quantum eigensolver (VQE) is an algorithm to find an approximate ground state of a quantum system and is expected to work on even such a device. The deep VQE [K. Fujii, et al., arXiv:2007.10917] is an extension of the original VQE algorithm, which takes a divide-and-conquer approach to relax the hardware requirement. While the deep VQE is successfully applied for spin models and periodic material, its validity on a molecule, where the Hamiltonian is highly nonlocal in the qubit basis, is still unexplored. Here, we discuss the performance of the deep VQE algorithm applied to quantum chemistry problems. Specifically, we examine different subspaceforming methods and compare their accuracy and complexity on a 10 H-atom treelike molecule as well as a 13 H-atom version. Additionally, we examine the performance on the natural occurring molecule retinal. This work also proposes multiple methods to lower the number of qubits required to calculate the ground state of a molecule. We find that the deep VQE can simulate the electron-correlation energy of the ground state to an error of below 1%, thus helping us to reach chemical accuracy in some cases. The accuracy differences and qubits' reduction highlights the basis creation method's impact on the deep VQE.