论文标题
关于Codimension-One $ a $ - hyperchometric system的解决方案
On solutions of codimension-one $A$-hypergeometric systems
论文作者
论文摘要
通过一个编纂的系统,我们是指一个系统,其关系的晶格排名排名第一。我们考虑Codimension-One $ a $ hyphemetric systems,并明确地构建了对数系列解决方案的原点。当参数向量$β$不是谐音时,我们通过此过程在原点上获得了一组对数系列解决方案。我们还确定何时具有非谐振参数的编辑态度系统在起源时可能具有最大的单能单体模型。
By a codimension-one system we mean a system whose lattice of relations has rank one. We consider codimension-one $A$-hypergeometric systems and explicitly construct some of the logarithmic series solutions at the origin. When the parameter vector $β$ is nonresonant we obtain a full set of logarithmic series solutions at the origin by this procedure. We also determine when a codimension-one system with nonresonant parameter can have maximal unipotent monodromy at the origin.