论文标题
改进的瓦尔德形式主义和二聚态黑弦的第一定律与混合陈词
Improved Wald formalism and First Law of Dyonic Black Strings with Mixed Chern-Simons Terms
论文作者
论文摘要
我们研究了二聚态黑弦的热力学的第一定律,该定律具有IIA型字符串理论的线性动量,并在K3上以领先顺序$α'$校正进行了压实。低能效力的动作包含$ -2B _ {(2)} \ wedge {\ rm tr}(r(γ_\ pm)\ wedge r(γ_\ pm))$的混合chern-simon \ Mathrm {cs} _ {(3)}(γ_\ pm)$到总衍生物。我们发现,Wald Entropy公式的幼稚应用导致与混合Chern-Simons术语的两个配方相关的两个不同答案。令人惊讶的是,它们都不满足使用标准方法明确计算出的其他保守费用的热力学的第一定律。我们通过仔细评估无穷大和地平线的全部无限哈密顿量来解决这个问题,包括与杀戮载体成比例的贡献,这些术语在地平线上并非易变且不可或缺。我们发现,与$ -2B _ {(2)} \ wedge {\ rm tr}(r(γ_\ pm)\ wedge r(γ_\ pm))$相关的无限hamiltionian $需要通过封闭但不添加串联的术语来消失,这会消失或limeal grumenter或lineal inmanem inmomm am anmengm,则需要改进。因此,混合的Chern-Simons项的两个制剂产生的熵结果与Wald熵公式不一致。就极好的黑色琴弦而言,我们还将结果与从森的方法中获得的结果进行了对比。
We study the first law of thermodynamics of dyonic black strings carrying a linear momentum in type IIA string theory compactified on K3 with leading order $α'$ corrections. The low energy effective action contains mixed Chern-Simons terms of the form $-2B_{(2)}\wedge {\rm tr}(R(Γ_\pm)\wedge R(Γ_\pm))$ which is equivalent to $2H_{(3)}\wedge \mathrm{CS}_{(3)}(Γ_\pm)$ up to a total derivative. We find that the naive application of Wald entropy formula leads to two different answers associated with the two formulations of the mixed Chern-Simons terms. Surprisingly, neither of them satisfies the first law of thermodynamics for other conserved charges computed unambiguously using the standard methods. We resolve this problem by carefully evaluating the full infinitesimal Hamiltonian at both infinity and horizon, including contributions from terms proportional to the Killing vector which turn out to be nonvanishing on the horizon and indispensable to establish the first law. We find that the infinitesimal Hamiltionian associated with $-2B_{(2)}\wedge {\rm tr}(R(Γ_\pm)\wedge R(Γ_\pm))$ requires an improvement via adding a closed but non-exact term, which vanishes when the string does not carry either the magnetic charge or linear momentum. Consequently, both formulations of the mixed Chern-Simons terms yield the same result of the entropy that however does not agree with the Wald entropy formula. In the case of extremal black strings, we also contrast our result with the one obtained from Sen's approach.