论文标题

汤普森集团的两个新化身

Two New Avatars of Moonshine for the Thompson Group

论文作者

Duncan, John F. R., Harvey, Jeffrey A., Rayhaun, Brandon C.

论文摘要

汤普森(Thompson)零星群体接受了与两种模块化形式的特殊关系。一方面,上个世纪的怪物通用月光为汤普森组配备了一个模块,该模块与之相关的McKay-Thompson系列是明显的重量零模块化函数。另一方面,格里芬(Griffin)和梅尔滕斯(Mertens)验证了麦凯 - 汤普森(McKay-Thompson)系列的模块的存在,其重量是一半的模块化形式,这些模块是本世纪由本世纪的最后两位作者分配给汤普森组的。在本文中,我们通过证明汤普森月光的两个新化身的存在来结束这张图片:一个新的模块产生重量零模块化功能,以及一个新的模块产生了一半的重量。我们解释了较新的模块与较旧模块如何通过Borcherds产品和奇异模量的痕迹相关。在这样做时,我们阐明了先前已知的模块之间的关系,并向汤普森组揭示了月光的新算术方面。我们还提供了证据表明,这种现象扩展到其他广义可怕的月光和半月光的对应关系,从而分别以重量为一半和重量为零的对应物丰富了这些现象。

The Thompson sporadic group admits special relationships to modular forms of two kinds. On the one hand, last century's generalized moonshine for the monster equipped the Thompson group with a module for which the associated McKay-Thompson series are distinguished weight zero modular functions. On the other hand, Griffin and Mertens verified the existence of a module for which the McKay-Thompson series are distinguished modular forms of weight one-half, that were assigned to the Thompson group in this century by the last two authors of this work. In this paper we round out this picture by proving the existence of two new avatars of Thompson moonshine: a new module giving rise to weight zero modular functions, and a new module giving rise to forms of weight one-half. We explain how the newer modules are related to the older ones by Borcherds products and traces of singular moduli. In so doing we clarify the relationship between the previously known modules, and expose a new arithmetic aspect to moonshine for the Thompson group. We also present evidence that this phenomenon extends to a correspondence between other cases of generalized monstrous moonshine and penumbral moonshine, and thereby enriches these phenomena with counterparts in weight one-half and weight zero, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源