论文标题
2020zso潮汐破坏事件之后的椭圆积聚磁盘
An elliptical accretion disk following the tidal disruption event AT 2020zso
论文作者
论文摘要
[删节]我们根据紫外线/光学光度观测值以及光谱线的含量和进化来推断出2020ZSO的TDE分类为TDE。我们确定了瞬态,双峰鲍恩(N III),我,II和Halpha排放线。我们使用相对论的,椭圆形的增生磁盘模型对He II的培养基分辨率光谱(在仔细划分N III贡献之后)和HALPHA线。我们发现,峰之前的光谱演化可以通过与流出的,光学厚的爱丁顿信封一致的光学深度效应来解释。在峰值周围,信封达到其最大范围(大约10^15或3000-6000重力半径,对于5-10 10^5的推断黑洞质量),并变得光学上很薄。可以用高度倾斜(i = 85+-5度),高度椭圆形(E = 0.97+-0.01)和相对紧凑(RIN =几次RIN =几次RG和ROUT =几个1000 RG)积聚磁盘来重现峰值和峰值之后的HALPHA和HE II发射线。总体而言,该线曲线提出了针对新的积聚流的高度椭圆形几何形状,这与新形成的TDE磁盘的理论期望一致。我们首次定量确认了Bowen(和X射线昏暗)TDE的高倾斜度,这与TDE的统一图片一致,因为TDE的统一图片在很大程度上决定了观察性的外观。快速线轮廓变化排除了二进制SMBH假设为偏心率的起源。因此,这些结果提供了AGN中的TDE与偏心磁盘中的TDE之间的直接联系。我们首次说明了如何使用光谱来通过(缺乏)磁盘进动特征(推断倾斜度的变化)来约束黑洞旋转,并排除高黑洞旋转值(a <0.8)。
[Abridged] We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations, and spectral line content and evolution. We identify transient, double-peaked Bowen (N III), He I, He II and Halpha emission lines. We model medium resolution optical spectroscopy of the He II (after careful deblending of the N III contribution) and Halpha lines during the rise, peak and early decline of the light curve using relativistic, elliptical accretion disk models. We find that the spectral evolution before peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around peak the envelope reaches its maximum extent (approximately 10^15 or 3000-6000 gravitational radii for an inferred black hole mass of 5-10 10^5) and becomes optically thin. The Halpha and He II emission lines at and after peak can be reproduced with a highly inclined (i=85+-5 degrees), highly elliptical (e=0.97+-0.01) and relatively compact (Rin = several 100 Rg and Rout = several 1000 Rg ) accretion disk. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary SMBH hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination) - and rule out high black hole spin values (a < 0.8).