论文标题

深图学习的数据增强:调查

Data Augmentation for Deep Graph Learning: A Survey

论文作者

Ding, Kaize, Xu, Zhe, Tong, Hanghang, Liu, Huan

论文摘要

图形神经网络是一种强大的深度学习工具,用于建模图形结构化数据,在众多图形学习任务上表现出了出色的性能。为了解决深图学习中的数据噪声和数据稀缺性问题,最近有关图形数据的研究已加剧。但是,常规数据增强方法几乎无法处理具有多模式性的非欧几里得空间中定义的图形结构化数据。在这项调查中,我们正式提出了图数据增强的问题,并进一步审查了代表性技术及其在不同深层学习问题中的应用。具体而言,我们首先提出了图形数据扩展技术的分类法,然后通过根据增强信息方式对相关工作进行分类,提供结构化的审查。此外,我们总结了以数据为中心的深图学习中两个代表性问题的图形数据扩展的应用:(1)可靠的图形学习,重点是增强输入图的实用性以及通过图数据增强的模型容量; (2)低资源图学习,其针对通过图数据扩大标记的训练数据量表的目标。对于每个问题,我们还提供层次结构问题分类法,并审查与图数据增强相关的现有文献。最后,我们指出了有希望的研究方向和未来研究的挑战。

Graph neural networks, a powerful deep learning tool to model graph-structured data, have demonstrated remarkable performance on numerous graph learning tasks. To address the data noise and data scarcity issues in deep graph learning, the research on graph data augmentation has intensified lately. However, conventional data augmentation methods can hardly handle graph-structured data which is defined in non-Euclidean space with multi-modality. In this survey, we formally formulate the problem of graph data augmentation and further review the representative techniques and their applications in different deep graph learning problems. Specifically, we first propose a taxonomy for graph data augmentation techniques and then provide a structured review by categorizing the related work based on the augmented information modalities. Moreover, we summarize the applications of graph data augmentation in two representative problems in data-centric deep graph learning: (1) reliable graph learning which focuses on enhancing the utility of input graph as well as the model capacity via graph data augmentation; and (2) low-resource graph learning which targets on enlarging the labeled training data scale through graph data augmentation. For each problem, we also provide a hierarchical problem taxonomy and review the existing literature related to graph data augmentation. Finally, we point out promising research directions and the challenges in future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源