论文标题

辫子网络上编织和融合的兼容性

Compatibility of Braiding and Fusion on Wire Networks

论文作者

Conlon, Mia, Slingerland, Joost K

论文摘要

已经提出,在图形上或更具体地在量子线网络上交换粒子,以作为执行容错量子计算的一种手段。这是灵感来自于平面系统中的Anyons的编织。但是,图表上的交换不是由通常的编织组控制的,而是由图形辫子组约束。通过施加图形编织与拓扑电荷融合的兼容性,我们获得了广义的六边形方程。我们找到了通常的平面Anyons解决方案,但也更一般的编织行动。我们使用Abelian,fibonacci和Ising Fusion规则来说明这一点。

Exchanging particles on graphs, or more concretely on networks of quantum wires, has been proposed as a means to perform fault tolerant quantum computation. This was inspired by braiding of anyons in planar systems. However, exchanges on a graph are not governed by the usual braid group but instead by a graph braid group. By imposing compatibility of graph braiding with fusion of topological charges, we obtain generalized hexagon equations. We find the usual planar anyons solutions but also more general braid actions. We illustrate this with Abelian, Fibonacci and Ising fusion rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源