论文标题
在$ h $ - 亚种量子顶点代数与Hecke对称性相关的代数
On the $h$-adic quantum vertex algebras associated with Hecke symmetries
论文作者
论文摘要
我们研究了Gurevich和Saponov引入的Hecke Symetries,研究RTT型Yangians的量子顶点代数框架以及与Hecke Symetries相关的编织的Yangians。首先,我们为上述类似扬式的代数构建了几个模块系列,在RTT类型的情况下,它们导致一定的$ h $ h $ h $ - ad量的量子Quantum vartex代数$ \ nathcal {v} _c(r)$ agraidof-kazhdan construction $ coce($ con) $ \ MATHCAL {V} _C(R)$ - 模块。接下来,我们表明,适当定义的量子决定因素的系数可用于获得$ \ nathcal {v} _c(r)$的中心元素,以及此类($ ϕ $ coordined)$ \ nathcal {v} _c(v} _c(r)$ - 模块的不变性。最后,我们研究了与$ \ Mathcal {v} _C(r)$的表示理论密切相关的某个代数。
We study the quantum vertex algebraic framework for the Yangians of RTT-type and the braided Yangians associated with Hecke symmetries, introduced by Gurevich and Saponov. First, we construct several families of modules for the aforementioned Yangian-like algebras which, in the RTT-type case, lead to a certain $h$-adic quantum vertex algebra $\mathcal{V}_c (R)$ via the Etingof-Kazhdan construction, while, in the braided case, they produce ($ϕ$-coordinated) $\mathcal{V}_c (R)$-modules. Next, we show that the coefficients of suitably defined quantum determinant can be used to obtain central elements of $\mathcal{V}_c (R)$, as well as the invariants of such ($ϕ$-coordinated) $\mathcal{V}_c (R)$-modules. Finally, we investigate a certain algebra which is closely connected with the representation theory of $\mathcal{V}_c (R)$.