论文标题
Lipschitz最佳传输图的gan估计
GAN Estimation of Lipschitz Optimal Transport Maps
论文作者
论文摘要
本文介绍了基于神经网络的两个概率分布之间最佳传输图的第一个统计上一致的估计器。在Lipschitz神经网络领域的理论和实践进步的基础上,我们定义了由二次运输成本惩罚Lipschitz受到的生成对抗网络的惩罚。然后,我们证明,在规律性假设下,所获得的发电机随着样本量增加到无穷大的影响而均匀地收敛到最佳传输图。此外,我们通过许多数值实验表明,学到的映射具有有希望的性能。与以前解决统计保证或实用性的工作相反,我们提供了一种表现力且可行的估计器,该估计量为必须认证渐近行为的最佳运输应用铺平了方法。
This paper introduces the first statistically consistent estimator of the optimal transport map between two probability distributions, based on neural networks. Building on theoretical and practical advances in the field of Lipschitz neural networks, we define a Lipschitz-constrained generative adversarial network penalized by the quadratic transportation cost. Then, we demonstrate that, under regularity assumptions, the obtained generator converges uniformly to the optimal transport map as the sample size increases to infinity. Furthermore, we show through a number of numerical experiments that the learnt mapping has promising performances. In contrast to previous work tackling either statistical guarantees or practicality, we provide an expressive and feasible estimator which paves way for optimal transport applications where the asymptotic behaviour must be certified.