论文标题

房屋:知识图嵌入使用家庭参数化

HousE: Knowledge Graph Embedding with Householder Parameterization

论文作者

Li, Rui, Zhao, Jianan, Li, Chaozhuo, He, Di, Wang, Yiqi, Liu, Yuming, Sun, Hao, Wang, Senzhang, Deng, Weiwei, Shen, Yanming, Xie, Xing, Zhang, Qi

论文摘要

知识图嵌入(KGE)的有效性在很大程度上取决于建模固有关系模式和映射属性的能力。但是,现有方法只能以不足的建模能力捕获其中的一些。在这项工作中,我们提出了一个名为House的功能更强大的KGE框架,该框架涉及基于两种家庭转换的新型参数化:(1)居民旋转以实现建模关系模式的较高能力; (2)处理复杂关系映射属性的住户预测。从理论上讲,房屋能够同时建模至关重要的关系模式和映射属性。此外,房屋是对现有基于旋转的模型的概括,同时将旋转扩展到高维空间。从经验上讲,House在五个基准数据集上实现了新的最新性能。我们的代码可在https://github.com/anrep/house上找到。

The effectiveness of knowledge graph embedding (KGE) largely depends on the ability to model intrinsic relation patterns and mapping properties. However, existing approaches can only capture some of them with insufficient modeling capacity. In this work, we propose a more powerful KGE framework named HousE, which involves a novel parameterization based on two kinds of Householder transformations: (1) Householder rotations to achieve superior capacity of modeling relation patterns; (2) Householder projections to handle sophisticated relation mapping properties. Theoretically, HousE is capable of modeling crucial relation patterns and mapping properties simultaneously. Besides, HousE is a generalization of existing rotation-based models while extending the rotations to high-dimensional spaces. Empirically, HousE achieves new state-of-the-art performance on five benchmark datasets. Our code is available at https://github.com/anrep/HousE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源