论文标题
非固定子阵列的到达估计和相校正的方向:凸优化方法
Direction of Arrival Estimation and Phase-Correction for Non-Coherent Sub-Arrays: A Convex Optimization Approach
论文作者
论文摘要
估计来源的到达方向(DOA)是航空航天和车辆通信,本地化和雷达的重要问题。在本文中,我们考虑了一项具有挑战性的多源DOA估计任务,其中接收天线阵列由非固定子阵列组成,即,在每个快照时都会观察到不同的未知相位偏移(例如,由于避免了整个驱动器的当地示波器的要求)。我们将此问题提出,因为关节稀疏和低级矩阵的重建,并解决了该问题的凸松弛。为了比通用求解器更好地扩展与快照数量的优化复杂性,我们设计了一个优化方案,基于整合乘数的交替方向方法和加速的近端梯度技术,从而利用了问题的结构。虽然可以从上述凸问题的解中估算DOA,但我们进一步显示,如果仅从该解决方案中估算出子阵列的相移,则如何获得改进。这是使用另一个计算机上的凸松弛,几乎紧密的。使用估计的相移,可以创建“相校正”观测值,并可以应用最终的平原(“相干”)DOA估计方法。数值实验表明了拟议策略比现有方法的性能优势。
Estimating the direction of arrival (DOA) of sources is an important problem in aerospace and vehicular communication, localization and radar. In this paper, we consider a challenging multi-source DOA estimation task, where the receiving antenna array is composed of non-coherent sub-arrays, i.e., sub-arrays that observe different unknown phase shifts at every snapshot (e.g., due to waiving the demanding synchronization of local oscillators across the entire array). We formulate this problem as the reconstruction of joint sparse and low-rank matrices, and solve the problem's convex relaxation. To scale the optimization complexity with the number of snapshots better than general-purpose solvers, we design an optimization scheme, based on integrating the alternating direction method of multipliers and the accelerated proximal gradient techniques, that exploits the structure of the problem. While the DOAs can be estimated from the solution of the aforementioned convex problem, we further show how an improvement is obtained if, instead, one estimates from this solution only the sub-arrays' phase shifts. This is done using another, computationally-light, convex relaxation that is practically tight. Using the estimated phase shifts, "phase-corrected" observations are created and a final plain ("coherent") DOA estimation method can be applied. Numerical experiments show the performance advantages of the proposed strategies over existing methods.