论文标题

通过图理论的高斯玻色子采样认证

Certification of Gaussian Boson Sampling via graph theory

论文作者

Giordani, Taira, Mannucci, Valerio, Spagnolo, Nicolò, Fumero, Marco, Rampini, Arianna, Rodolà, Emanuele, Sciarrino, Fabio

论文摘要

高斯玻色子采样是一种非宇宙模型,用于灵感来自玻色子采样问题的原始公式。如今,它代表了一个范式量子平台,以在特定的计算模型中达到量子优势制度。确实,由于基于光子学处理器的实现,最新的高斯玻色子采样实验已经达到了一定程度的复杂程度,量子设备比当前最新的经典策略更快地解决了任务。此外,最近的研究已经确定了超出固有抽样任务的可能应用。特别是,已经建立了真正的高斯玻色子采样设备的光子计数与图中完美匹配的数量之间的直接连接。在这项工作中,我们建议利用与基准高斯玻色子采样实验的联系。我们将编码在设备中的图形的特征​​向量的属性解释为从真实输入状态进行正确采样的签名。在此框架内,提出了两种利用图形和图形内核的分布的方法。我们的结果为对定制算法的实际需求提供了一种新颖的方法,以基准大规模高斯玻色子采样器。

Gaussian Boson Sampling is a non-universal model for quantum computing inspired by the original formulation of the Boson Sampling problem. Nowadays, it represents a paradigmatic quantum platform to reach the quantum advantage regime in a specific computational model. Indeed, thanks to the implementation in photonics-based processors, the latest Gaussian Boson Sampling experiments have reached a level of complexity where the quantum apparatus has solved the task faster than currently up-to-date classical strategies. In addition, recent studies have identified possible applications beyond the inherent sampling task. In particular, a direct connection between photon counting of a genuine Gaussian Boson Sampling device and the number of perfect matchings in a graph has been established. In this work, we propose to exploit such a connection to benchmark Gaussian Boson Sampling experiments. We interpret the properties of the feature vectors of the graph encoded in the device as a signature of correct sampling from the true input state. Within this framework, two approaches that exploit the distributions of graph feature vectors and graph kernels are presented. Our results provide a novel approach to the actual need for tailored algorithms to benchmark large-scale Gaussian Boson Samplers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源