论文标题
EVOKG:与时间知识图上推理的共同建模事件时间和网络结构
EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning over Temporal Knowledge Graphs
论文作者
论文摘要
我们如何通过时间知识图(TKG)执行知识推理? TKGS代表有关实体及其关系的事实,每个事实都与时间戳相关。 TKG的推理,即从随着时间的推移KGS推断新事实,对于许多应用程序提供智能服务至关重要。但是,尽管现实世界中可以用作TKG的现实数据的普遍性,但大多数方法都集中在静态知识图上推理,或者无法预测未来的事件。在本文中,我们提出了一个问题公式,该问题统一了两个主要问题,这些问题需要解决TKG的有效推理,即对事件时间和不断发展的网络结构进行建模。我们提出的方法Evokg在有效的框架中共同对这两个任务进行了建模,该框架通过经常性事件建模捕获了TKG中不断变化的结构和时间动态,并根据时间邻域聚合框架对实体之间的相互作用进行建模。此外,Evokg使用基于神经密度估计的柔性机制来实现事件时间的准确建模。实验表明,Evokg在有效性方面优于现有方法(高达77%和116%的准确时间和链接预测)和效率。
How can we perform knowledge reasoning over temporal knowledge graphs (TKGs)? TKGs represent facts about entities and their relations, where each fact is associated with a timestamp. Reasoning over TKGs, i.e., inferring new facts from time-evolving KGs, is crucial for many applications to provide intelligent services. However, despite the prevalence of real-world data that can be represented as TKGs, most methods focus on reasoning over static knowledge graphs, or cannot predict future events. In this paper, we present a problem formulation that unifies the two major problems that need to be addressed for an effective reasoning over TKGs, namely, modeling the event time and the evolving network structure. Our proposed method EvoKG jointly models both tasks in an effective framework, which captures the ever-changing structural and temporal dynamics in TKGs via recurrent event modeling, and models the interactions between entities based on the temporal neighborhood aggregation framework. Further, EvoKG achieves an accurate modeling of event time, using flexible and efficient mechanisms based on neural density estimation. Experiments show that EvoKG outperforms existing methods in terms of effectiveness (up to 77% and 116% more accurate time and link prediction) and efficiency.