论文标题
在大型高速公路网络中识别亚分水集体效应
Identifying subdominant collective effects in a large motorway network
论文作者
论文摘要
在高速公路网络中,零件之间或更确切地说,(不同)高速公路之间的相关性引起了人们的关注。对单个高速公路上的流量和速度的了解不足,而是它们的相关性分别决定或反映网络上的功能和动力学。这些相关性是时间依赖性的,因为网络上的动力学是高度非平稳的。除了概念上的重要性之外,相关性还必不可少以检测流量网络中的故障风险。在这里,我们继续揭示交通网络中某种相关性的层次结构,这是由于存在和集体范围所致。在先前的研究中,我们专注于整个交通网络中存在的集体运动,即整个系统的集体性。在这里,我们设法从数据中减去这种主导效应,并确定影响流量网络不同部分的次要集体。为此,我们对整个系统的相关矩阵进行了光谱分析。因此,我们从相关性引起的虚拟网络中提取信息,并将其映射在真实的拓扑上,即在真实的高速公路网络上。未覆盖的亚域集合为流量网络提供了新的表征。我们为德国北莱茵 - 韦斯特法里亚(NRW)的大型高速公路网络进行了研究。
In a motorway network, correlations between parts or, more precisely, between the sections of (different) motorways, are of considerable interest. Knowledge of flows and velocities on individual motorways is not sufficient, rather, their correlations determine or reflect, respectively, the functionality of and the dynamics on the network. These correlations are time-dependent as the dynamics on the network is highly non-stationary. Apart from the conceptual importance, correlations are also indispensable to detect risks of failure in a traffic network. Here, we proceed with revealing a certain hierarchy of correlations in traffic networks that is due to the presence and to the extent of collectivity. In a previous study, we focused on the collectivity motion present in the entire traffic network, i.e. the collectivity of the system as a whole. Here, we manage to subtract this dominant effect from the data and identify the subdominant collectivities which affect different, large parts of the traffic network. To this end, we employ a spectral analysis of the correlation matrix for the whole system. We thereby extract information from the virtual network induced by the correlations and map it on the true topology, i.e. on the real motorway network. The uncovered subdominant collectivities provide a new characterization of the traffic network. We carry out our study for the large motorway network of North Rhine-Westphalia (NRW), Germany.