论文标题
通过自我监督的持续学习改善行人预测模型
Improving Pedestrian Prediction Models with Self-Supervised Continual Learning
论文作者
论文摘要
自主移动机器人需要准确的人类运动预测,以安全有效地在行人之间进行行驶,行人可能会适应环境变化。本文介绍了一个自我监督的持续学习框架,以在各种情况下在线改善数据驱动的行人预测模型。特别是,我们利用了在机器人检测和跟踪管道中通常可用的行人数据流,以完善预测模型及其在看不见的情况下的性能。为了避免忘记以前学到的概念,一个被称为灾难性遗忘的问题,我们的框架包括正规化损失,以惩罚模型参数的变化,这对于以前的场景很重要,并在一组以前的示例中重新培训以保留过去的知识。实际和模拟数据的实验结果表明,与天真地在线培训预测模型相比,我们的方法可以在看不见的情况下改善预测性能,同时从可见方案中保留知识。
Autonomous mobile robots require accurate human motion predictions to safely and efficiently navigate among pedestrians, whose behavior may adapt to environmental changes. This paper introduces a self-supervised continual learning framework to improve data-driven pedestrian prediction models online across various scenarios continuously. In particular, we exploit online streams of pedestrian data, commonly available from the robot's detection and tracking pipeline, to refine the prediction model and its performance in unseen scenarios. To avoid the forgetting of previously learned concepts, a problem known as catastrophic forgetting, our framework includes a regularization loss to penalize changes of model parameters that are important for previous scenarios and retrains on a set of previous examples to retain past knowledge. Experimental results on real and simulation data show that our approach can improve prediction performance in unseen scenarios while retaining knowledge from seen scenarios when compared to naively training the prediction model online.