论文标题
Schur措施和Schur过程中本地模式的大量定律
A law of large numbers for local patterns in Schur measures and a Schur process
论文作者
论文摘要
本说明的目的是证明在离散点过程中的本地模式的大量定律。我们研究了两种不同的情况:Okounkov和Reshetikhin引入的一类晶格上的一类过程过程,包括某些SCHUR度量,以及随机平面分区的模型。结果在两种情况下都表明,函数的线性统计量,由随机配置中固定模式的外观加权并方便地归一化,收敛于该功能的确定性积分,该功能是根据图案外观极限过程加权的。
The aim of this note is to prove a law of large numbers for local patterns in discrete point processes. We investigate two different situations: a class of point processes on the one dimensional lattice including certain Schur measures, and a model of random plane partitions, introduced by Okounkov and Reshetikhin. The results state in both cases that the linear statistic of a function, weighted by the appearance of a fixed pattern in the random configuration and conveniently normalized, converges to the deterministic integral of that function weighted by the expectation with respect to the limit process of the appearance of the pattern.