论文标题
用于分析所选蛋白与硫酸软骨素之间相互作用的统计方法
Statistical method for analysis of interactions between chosen protein and chondroitin sulfate in an aqueous environment
论文作者
论文摘要
我们介绍了研究所选蛋白与另一个分子之间的相互作用的统计方法(例如,这都是滑水环境中滑液中润滑剂的成分)。这项研究是在粘蛋白动力学选定特征的单变量时间序列上进行的,粘蛋白的动力学特征在四种不同的盐水溶液中与硫酸软骨素(4和6)相互作用。我们的统计方法是基于复发方法来分析分子动力学所选特征的基础。这种复发方法通常用于重建分子系统在其减少的相空间中的演变,其中考虑了过程中最重要的变量。详细说明,分析的时间序列被置于记录的子系列上,这些记录有望携带有关分子系统的有意义信息。子系列的元素被恒定的延迟时间滞后夹住(这是在我们的情况下由统计测试确定的参数),子序列的长度是嵌入式维度参数(使用CAO方法)。我们使用复发图方法与香农熵方法相结合来分析子系列测定的鲁棒性。我们假设子系列的鲁棒性决定了分子系统动力学的一些细节。我们分析了相当高的噪声特征,以证明这种特征会导致图形上相似的复发图。从复发图中,已经计算出香农熵。但是,我们证明了香农熵值高度取决于分析特征的延迟时间值。因此,需要详细说明复发图分析的更精确的方法。因此,我们建议可以使用随机行走方法来自动分析复发图。
We present the statistical method to study the interaction between a chosen protein and another molecule (e.g., both being components of lubricin found in synovial fluid) in a water environment. The research is performed on the example of univariate time series of chosen features of the dynamics of mucin, which interact with chondroitin sulfate (4 and 6) in four different saline solutions. Our statistical approach is based on recurrence methods to analyze chosen features of molecular dynamics. Such recurrence methods are usually applied to reconstruct the evolution of a molecular system in its reduced phase space, where the most important variables in the process are taken into account. In detail, the analyzed time-series are spitted onto sub-series of records that are expected to carry meaningful information about the system of molecules. Elements of sub-series are splinted by the constant delay-time lag (that is the parameter determined by statistical testing in our case), and the length of sub-series is the embedded dimension parameter (using the Cao method). We use the recurrent plots approach combined with the Shannon entropy approach to analyze the robustness of the sub-series determination. We hypothesize that the robustness of the sub-series determines some specifics of the dynamics of the system of molecules. We analyze rather highly noised features to demonstrate that such features lead to recurrence plots that graphically look similar. From the recurrence plots, the Shannon entropy has been computed. We have, however, demonstrated that the Shannon entropy value is highly dependent on the delay time value for analyzed features. Hence, elaboration of a more precise method of the recurrence plot analysis is required. For this reason, we suggest the random walk method that can be applied to analyze the recurrence plots automatically.