论文标题

操作员复杂性的普遍关系

Universal relation for operator complexity

论文作者

Fan, Zhong-Ying

论文摘要

我们研究Krylov复杂性$ C_K $和操作员熵$ S_K $在运营商增长中。我们发现,对于各种系统,包括混乱的系统和综合理论,这两个数量总是享受对数关系$ s_k \ sim \ sim \ log {c_k} $,在长时间内,散发行为统一进化出现。否则,关系将不再存在。关系的普遍性与运营商增长的不可逆性密切相关。

We study Krylov complexity $C_K$ and operator entropy $S_K$ in operator growth. We find that for a variety of systems, including chaotic ones and integrable theories, the two quantities always enjoy a logarithmic relation $S_K\sim \log{C_K}$ at long times, where dissipative behavior emerges in unitary evolution. Otherwise, the relation does not hold any longer. Universality of the relation is deeply connected to irreversibility of operator growth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源