论文标题

deponet-Grid-uq:一个可信赖的深层操作员框架,用于预测电网的通道后轨迹

DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid's Post-Fault Trajectories

论文作者

Moya, Christian, Zhang, Shiqi, Yue, Meng, Lin, Guang

论文摘要

本文提出了一种新的数据驱动方法,用于对电源系统后的故障轨迹的可靠预测。所提出的方法基于深层操作员网络(DeepOnets)的根本新概念。与学习近似功能的传统神经网络相比,deponets旨在近似非线性操作员。在此操作员框架下,我们将deponet设计为(1)以输入为输入,例如通过仿真或相量测量单元收集的故障轨迹,并且(2)提供了作为输出的预测后违法轨迹。此外,我们通过不确定性定量赋予了急需平衡效率与可靠/可信赖的预测的能力。为此,我们提出并比较两种能够量化预测不确定性的方法。首先,我们提出了一个使用随机梯度汉密尔顿蒙特卡洛(Monte-Carlo)从DeepOnet参数的后验分布中采样的\ textit {贝叶斯deponet}(b-Deeponet)。然后,我们提出了一种使用概率训练策略来为deponets配备一种自动化不确定性量化的形式,几乎没有额外的计算成本。最后,我们使用IEEE 16-Machine 68-Bus系统验证了所提出的B-Deeponet和Prob-Deeponet的预测能力和不确定性定量能力。

This paper proposes a new data-driven method for the reliable prediction of power system post-fault trajectories. The proposed method is based on the fundamentally new concept of Deep Operator Networks (DeepONets). Compared to traditional neural networks that learn to approximate functions, DeepONets are designed to approximate nonlinear operators. Under this operator framework, we design a DeepONet to (1) take as inputs the fault-on trajectories collected, for example, via simulation or phasor measurement units, and (2) provide as outputs the predicted post-fault trajectories. In addition, we endow our method with a much-needed ability to balance efficiency with reliable/trustworthy predictions via uncertainty quantification. To this end, we propose and compare two methods that enable quantifying the predictive uncertainty. First, we propose a \textit{Bayesian DeepONet} (B-DeepONet) that uses stochastic gradient Hamiltonian Monte-Carlo to sample from the posterior distribution of the DeepONet parameters. Then, we propose a \textit{Probabilistic DeepONet} (Prob-DeepONet) that uses a probabilistic training strategy to equip DeepONets with a form of automated uncertainty quantification, at virtually no extra computational cost. Finally, we validate the predictive power and uncertainty quantification capability of the proposed B-DeepONet and Prob-DeepONet using the IEEE 16-machine 68-bus system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源