论文标题

使用卷积神经网络从极端质量比灵感中检测引力波

Detecting Gravitational-waves from Extreme Mass Ratio Inspirals using Convolutional Neural Networks

论文作者

Zhang, Xue-Ting, Messenger, Chris, Korsakova, Natalia, Chan, Man Leong, Hu, Yi-Ming, Zhang, Jing-dong

论文摘要

极端质量比灵感(EMRIS)是太空传播GW探测器的最有趣的引力波(GW)。但是,由于许多问题,从建模准确的波形到传统匹配的过滤搜索方法所需的不切实际的大模板库,成功的GW数据分析仍然具有挑战性。在这项工作中,我们引入了基于卷积神经网络(CNN)的EMRI检测的原理证明方法。我们用埋在高斯噪声中的模拟EMRI信号来演示性能。我们表明,在广泛的物理参数上,网络对大于50的信噪比的EMRI系统有效,并且性能与信噪比最密切相关。该方法还显示了针对不同波形模型的良好概括能力。我们的研究揭示了机器学习技术(例如CNN)对更现实的EMRI数据分析的潜在适用性。

Extreme mass ratio inspirals (EMRIs) are among the most interesting gravitational wave (GW) sources for space-borne GW detectors. However, successful GW data analysis remains challenging due to many issues, ranging from the difficulty of modeling accurate waveforms, to the impractically large template bank required by the traditional matched filtering search method. In this work, we introduce a proof-of-principle approach for EMRI detection based on convolutional neural networks (CNNs). We demonstrate the performance with simulated EMRI signals buried in Gaussian noise. We show that over a wide range of physical parameters, the network is effective for EMRI systems with a signal-to-noise ratio larger than 50, and the performance is most strongly related to the signal-to-noise ratio. The method also shows good generalization ability towards different waveform models. Our study reveals the potential applicability of machine learning technology like CNNs towards more realistic EMRI data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源