论文标题
更好地观察到I型X射线爆发期间4U 1636 $ - $ 536的Poynting-Robertson拖动和磁盘反射的证据
NICER observations of the evidence of Poynting-Robertson drag and disk reflection during type I X-ray bursts from 4U 1636$-$536
论文作者
论文摘要
I型X射线爆发是对中子恒星(NS)表面上积聚物质不稳定的热核燃烧的结果。在这种爆发过程中,能量X射线光子的快速释放与周围的积聚磁盘相互作用,该磁盘会提高由于Poynting-Robertson的阻力而引起的积聚率,因此反映了爆发发射的一部分。我们使用Neutron Star Interior Composition Explorer的数据分析了NS低质量X射线二进制二进制4U 1636--536中的两个光球半径膨胀爆发。时间分辨的爆发光谱显示出与黑体模型的明显偏差。通过引入增强的持久发射($ f_a $模型)或从积聚磁盘(\ texttt {relxillns}模型)引入反射,可以显着改善光谱拟合。与\ texttt {relxillns}型号相比,$ f_a $模型提供了更高的黑体温度和更高的爆发通量。 $ f_a $模型的两个爆发的峰值通量,$ 4.36 \ times10^{ - 8}〜\ mathrm {erg〜cm^{ - 2} 〜S^{ - 1}} $和$ 9.10 \ times10 \ times10^{ - 8} Eddington分别从先前观察结果中分别从混合氢和纯氦爆发的限制。当同时考虑磁盘反射时,峰通量较低以匹配首选值。我们发现证据支持以下发现,即在这两次X射线爆发期间,都出现了Poynting-Robertson的阻力和磁盘反射。此外,磁盘反射可能会贡献$ \ sim20-30 \%$ $ $ $ $ $。
Type I X-ray bursts are the result of an unstable thermonuclear burning of accreting matter on the neutron star (NS) surface. The quick release of energetic X-ray photons during such bursts interacts with the surrounding accretion disk, which raises the accretion rate due to Poynting-Robertson drag and, thus, a fraction of the burst emission is reflected. We analyzed two photospheric radius expansion bursts in the NS low-mass X-ray binary 4U 1636--536 that took place in 2017, using data from Neutron star Interior Composition Explorer. The time-resolved burst spectra showed clear deviations from a blackbody model. The spectral fitting can be significantly improved by introducing either the enhanced persistent emission (the $f_a$ model) or the reflection from the accretion disk (the \texttt{relxillNS} model). The $f_a$ model provides a higher blackbody temperature and higher burst flux compared with the \texttt{relxillNS} model. The peak fluxes of two bursts from the $f_a$ model, $4.36\times10^{-8}~\mathrm{erg~cm^{-2}~s^{-1}}$ and $9.10\times10^{-8}~\mathrm{erg~cm^{-2}~s^{-1}}$, are slightly higher than the Eddington limits of mixed hydrogen-helium and pure helium bursts from previous observations, respectively. When the disk reflections have been taken into account simultaneously, the peak fluxes are lower to match the preferred values. We find evidence to support the finding that both the Poynting-Robertson drag and disk reflection have been appeared during these two X-ray bursts. Moreover, the disk reflection may contribute $\sim20-30\%$ of the total burst emissions.