论文标题

空气动力学优化中的机器学习

Machine Learning in Aerodynamic Shape Optimization

论文作者

Li, Jichao, Du, Xiaosong, Martins, Joaquim R. R. A.

论文摘要

由于空气动力学数据的可用性以及深度学习的持续发展,机器学习(ML)已越来越多地用于帮助空气形状优化(ASO)。我们会审查ML在ASO迄今为止的应用,并提供有关最先进和未来方向的观点。我们首先引入常规ASO和当前挑战。接下来,我们介绍在ASO中成功的ML基本面和详细信息ML算法。然后,我们回顾了ML应用程序,以解决三个方面:紧凑的几何设计空间,快速的空气动力学分析和有效的优化体系结构。除了提供研究的全面摘要外,我们还评论了开发方法的实用性和有效性。我们展示了尖端的ML方法如何使ASO受益并满足具有挑战性的需求,例如交互式设计优化。由于ML培训的高成本,实用的大规模设计优化仍然是一个挑战。建议对ML模型构建与先前的经验和知识(例如具有物理信息的ML)的耦合研究,以解决大规模的ASO问题。

Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源