论文标题
自动驾驶中的SIM卡至现实域适应用于车道检测和分类
Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving
论文作者
论文摘要
虽然自动驾驶中的监督检测和分类框架需要大型标记的数据集进行收敛,但无监督的域适应性(UDA)方法是由从光真实的模拟环境中生成的合成数据促进的,但被认为是低计且较耗时的解决方案。在本文中,我们建议使用对抗歧视和生成方法在自动驾驶中使用对抗歧视和生成方法进行UDA方案。我们还提出了Simulanes数据集生成器,以创建一个合成数据集,该数据集利用Carla的巨大交通情况和天气条件是自然主义的。所提出的UDA框架将标签作为源域的合成数据集以综合数据集为单位,而目标域是未标记的现实世界数据。使用对抗生成和特征歧视器,对学习模型进行了调整以预测目标域中的车道位置和类。使用现实世界和我们的合成数据集评估所提出的技术。结果表明,在检测和分类准确性和一致性方面,所提出的方法比其他基线方案表现出优势。消融研究表明,模拟数据集的大小在所提出方法的分类性能中起着重要作用。我们的UDA框架可从https://github.com/anita-hu/sim2real-lane-detection获得,我们的数据集生成器可在https://github.com/anita-hu/simulanes上发布。
While supervised detection and classification frameworks in autonomous driving require large labelled datasets to converge, Unsupervised Domain Adaptation (UDA) approaches, facilitated by synthetic data generated from photo-real simulated environments, are considered low-cost and less time-consuming solutions. In this paper, we propose UDA schemes using adversarial discriminative and generative methods for lane detection and classification applications in autonomous driving. We also present Simulanes dataset generator to create a synthetic dataset that is naturalistic utilizing CARLA's vast traffic scenarios and weather conditions. The proposed UDA frameworks take the synthesized dataset with labels as the source domain, whereas the target domain is the unlabelled real-world data. Using adversarial generative and feature discriminators, the learnt models are tuned to predict the lane location and class in the target domain. The proposed techniques are evaluated using both real-world and our synthetic datasets. The results manifest that the proposed methods have shown superiority over other baseline schemes in terms of detection and classification accuracy and consistency. The ablation study reveals that the size of the simulation dataset plays important roles in the classification performance of the proposed methods. Our UDA frameworks are available at https://github.com/anita-hu/sim2real-lane-detection and our dataset generator is released at https://github.com/anita-hu/simulanes