论文标题

使用条件3D-UNET生成对抗网络的异质幻象中新型放疗治疗的快速准确剂量预测

Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using conditional 3D-UNet generative adversarial networks

论文作者

Mentzel, Florian, Kröninger, Kevin, Lerch, Michael, Nackenhorst, Olaf, Paino, Jason, Rosenfeld, Anatoly, Saraswati, Ayu, Tsoi, Ah Chung, Weingarten, Jens, Hagenbuchner, Markus, Guatelli, Susanna

论文摘要

新型放射疗法技术(例如同步X射线微束放射疗法(MRT))需要快速剂量分布预测,这些预测在亚MM水平上是准确的,尤其是接近组织/骨/空气界面。蒙特卡洛物理模拟被认为是预测目标组织中剂量的最准确的工具之一,但可能非常耗时,因此对于治疗计划而言是过时的。更快的剂量预测算法通常仅用于临床部署的治疗。在这项工作中,我们探索了一种新方法,以使用用于临床前开发和现代机器学习技术的数字幻像的快速准确剂量估计。我们开发了一种生成的对抗网络(GAN)模型,该模型能够以足够的精度模拟等效的Geant4 Monte Carlo模拟,并使用它来预测宽的同步束向各种幻影传递的辐射剂量。使用全Geant4蒙特卡洛模拟通过幻影的同步辐射宽光束,用于训练GAN的能量沉积。能量沉积在大小140x18x18的体素矩阵中进行评分和预测,体素边缘长度为1 mm。 GAN模型由两个竞争的3D卷积神经网络组成,这些神经网络在光子束和幻影特性上进行条件。在研究下,所有幻影几何形状内部的能量沉积预测显示,最大沉积能量的偏差少于模拟的3%,大约99%的体素中的体素。单个预测的计算时间从使用GEANT4仿真的数百小时减少到使用GAN模型不到一秒钟。

Novel radiotherapy techniques like synchrotron X-ray microbeam radiation therapy (MRT), require fast dose distribution predictions that are accurate at the sub-mm level, especially close to tissue/bone/air interfaces. Monte Carlo physics simulations are recognised to be one of the most accurate tools to predict the dose delivered in a target tissue but can be very time consuming and therefore prohibitive for treatment planning. Faster dose prediction algorithms are usually developed for clinically deployed treatments only. In this work, we explore a new approach for fast and accurate dose estimations suitable for novel treatments using digital phantoms used in pre-clinical development and modern machine learning techniques. We develop a generative adversarial network (GAN) model, which is able to emulate the equivalent Geant4 Monte Carlo simulation with adequate accuracy, and use it to predict the radiation dose delivered by a broad synchrotron beam to various phantoms. The energy depositions used for the training of the GAN are obtained using full Geant4 Monte Carlo simulations of a synchrotron radiation broad beam passing through the phantoms. The energy deposition is scored and predicted in voxel matrices of size 140x18x18 with a voxel edge length of 1 mm. The GAN model consists of two competing 3D convolutional neural networks, which are conditioned on the photon beam and phantom properties. The energy deposition predictions inside all phantom geometries under investigation show deviations of less than 3% of the maximum deposited energy from the simulation for roughly 99% of the voxels in the field of the beam. The computing time for a single prediction is reduced from several hundred hours using Geant4 simulation to less than a second using the GAN model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源