论文标题
量子多体系统中的争夺动力学和超时有序相关器:教程
Scrambling Dynamics and Out-of-Time Ordered Correlators in Quantum Many-Body Systems: a Tutorial
论文作者
论文摘要
本教程文章介绍了量子信息系统中量子信息的物理学。目标是了解如何精确量化量子信息的传播以及如何在复杂的量子系统中出现因果关系。我们引入了一个通用框架,以研究量子信息的动态,包括检测和解码。我们表明,量子信息的动力学与海森伯格图片中的操作器动力学密切相关,在某些情况下,可以通过所谓的超时有序相关器〜(OTOC)精确量化。根据几种玩具模型,讨论了OTOC的一般行为,包括Sachdev-Ye-Kitaev模型,随机电路模型和Brownian模型,其中OTOC可以在分析上进行分析。我们介绍了数值方法,包括精确的对角线化和张量网络方法,以计算通用量子多体系统的OTOC。我们还调查了当前的实验方案,以测量各种量子模拟器中的OTOC。
This tutorial article introduces the physics of quantum information scrambling in quantum many-body systems. The goals are to understand how to precisely quantify the spreading of quantum information and how causality emerges in complex quantum systems. We introduce a general framework to study the dynamics of quantum information, including detection and decoding. We show that the dynamics of quantum information is closely related to operator dynamics in the Heisenberg picture, and, under certain circumstances, can be precisely quantified by the so-called out-of-time ordered correlator~(OTOC). The general behavior of OTOC is discussed based on several toy models, including the Sachdev-Ye-Kitaev model, random circuit models, and Brownian models, in which OTOC is analytically tractable. We introduce numerical methods, including exact diagonalization and tensor network methods, to calculate OTOC for generic quantum many-body systems. We also survey current experimental schemes for measuring OTOC in various quantum simulators.